0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cultivation of the gut bacterium Prevotella copri DSM 18205 T using glucose and xylose as carbon sources

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prevotella copri DSM18205 T is a human gut bacterium, suggested as a next‐generation probiotic. To utilize it as such, it is, however, necessary to grow the species in a reproducible manner. Prevotella copri has previously been reported to be highly sensitive to oxygen, and hence difficult to isolate and cultivate. This study presents successful batch cultivation strategies for viable strain inoculations and growth in both serum bottles and a stirred tank bioreactor (STR), without the use of an anaerobic chamber, as long as the cells were kept in the exponential growth phase. A low headspace volume in the STR was important to reach high cell density. P. copri utilized xylose cultivated in Peptone Yeast Xylose medium (PYX medium), resulting in a comparable growth rate and metabolite production as in Peptone Yeast Glucose medium (PYG medium) in batch cultivations at pH 7.2.Up to 5 g/L of the carbon source was consumed, leading to the production of succinic acid, acetic acid, and formic acid, and cell densities (OD 620 nm) in the range 6−7.5. The highest yield of produced succinic acid was 0.63 ± 0.05 g/g glucose in PYG medium cultivations and 0.88 ± 0.06 g/g xylose in PYX medium cultivations.

          Abstract

          Successful batch cultivation strategies for reproducible growth of the anaerobe Prevotella copri DSM18205 T, in both serum bottles and stirred tank reactor, are presented. Critical inoculum conditions were revealed and confirmed viable strain transfer without the use of an anaerobic chamber. The study provides fundamental knowledge to enable future commercial production.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Enterotypes of the human gut microbiome.

          Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.

            Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.

              Gut microbial composition depends on different dietary habits just as health depends on microbial metabolism, but the association of microbiota with different diets in human populations has not yet been shown. In this work, we compared the fecal microbiota of European children (EU) and that of children from a rural African village of Burkina Faso (BF), where the diet, high in fiber content, is similar to that of early human settlements at the time of the birth of agriculture. By using high-throughput 16S rDNA sequencing and biochemical analyses, we found significant differences in gut microbiota between the two groups. BF children showed a significant enrichment in Bacteroidetes and depletion in Firmicutes (P < 0.001), with a unique abundance of bacteria from the genus Prevotella and Xylanibacter, known to contain a set of bacterial genes for cellulose and xylan hydrolysis, completely lacking in the EU children. In addition, we found significantly more short-chain fatty acids (P < 0.001) in BF than in EU children. Also, Enterobacteriaceae (Shigella and Escherichia) were significantly underrepresented in BF than in EU children (P < 0.05). We hypothesize that gut microbiota coevolved with the polysaccharide-rich diet of BF individuals, allowing them to maximize energy intake from fibers while also protecting them from inflammations and noninfectious colonic diseases. This study investigates and compares human intestinal microbiota from children characterized by a modern western diet and a rural diet, indicating the importance of preserving this treasure of microbial diversity from ancient rural communities worldwide.
                Bookmark

                Author and article information

                Contributors
                fang.huang@biotek.lu.se
                Journal
                Microbiologyopen
                Microbiologyopen
                10.1002/(ISSN)2045-8827
                MBO3
                MicrobiologyOpen
                John Wiley and Sons Inc. (Hoboken )
                2045-8827
                27 June 2021
                June 2021
                : 10
                : 3 ( doiID: 10.1002/mbo3.v10.3 )
                : e1213
                Affiliations
                [ 1 ] Division of Biotechnology Department of Chemistry Lund University Lund Sweden
                [ 2 ] Aventure AB Lund Sweden
                [ 3 ] Department of Food Technology, Engineering and Nutrition Lund University Lund Sweden
                Author notes
                [*] [* ] Correspondence

                Fang Huang, Division of Biotechnology, Lund University, PO Box 124, SE‐221 00 Lund, Sweden.

                Email: fang.huang@ 123456biotek.lu.se

                Author information
                https://orcid.org/0000-0002-3429-003X
                https://orcid.org/0000-0002-2931-9133
                https://orcid.org/0000-0001-9862-9349
                https://orcid.org/0000-0002-8597-7050
                Article
                MBO31213
                10.1002/mbo3.1213
                8236902
                34180602
                93c1229c-6fb1-457f-9503-a9be61db43a9
                © 2021 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 May 2021
                : 30 November 2020
                : 01 June 2021
                Page count
                Figures: 12, Tables: 2, Pages: 0, Words: 9300
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                June 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.2 mode:remove_FC converted:28.06.2021

                Microbiology & Virology
                anaerobe,bioreactor,cultivation,fermentation,prevotella copri,type strain
                Microbiology & Virology
                anaerobe, bioreactor, cultivation, fermentation, prevotella copri, type strain

                Comments

                Comment on this article