Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nitric oxide donor protects against acetic acid-induced gastric ulcer in rats via S-nitrosylation of TRPV1 on vagus nerve

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was conducted to investigate the effects of nitric oxide (NO) in acetic acid-induced gastric ulcer of rats and the underlying mechanisms. We found that peritoneal injection of sodium nitroprusside (SNP), a NO donor, decreased the ulcer area, inflammatory cell infiltration and MPO degree in acetic acid-induced gastric ulcer in rats. This effect was abolished by a transient receptor potential vanilloid 1 (TRPV1) antagonist or prior subdiaphragmatic vagotomy. SNP increased the jejunal mesenteric afferent discharge in a dose-depended manner, which was largely diminished by pretreatment of S-nitrosylation blocker N-ethylmaleimide, TRPV1 antagonist capsazepine, genetic deletion of TRPV1, or vagotomy. Whole-cell patch clamp recording showed that SNP depolarized the resting membrane potential of NG neurons, and enhanced capsaicin-induced inward current, which were both blocked by N-ethylmaleimide. Our results suggest that NO donor SNP alleviates acetic acid-induced gastric ulcer in rats via vagus nerve, while S-nitrosylation of TRPV1 may participate in this route. Our findings reveal a new mechanism for vagal afferent activation, and a new potential anti-inflammatory target.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.

          Despite its very potent vasodilating action in vivo, acetylcholine (ACh) does not always produce relaxation of isolated preparations of blood vessels in vitro. For example, in the helical strip of the rabbit descending thoracic aorta, the only reported response to ACh has been graded contractions, occurring at concentrations above 0.1 muM and mediated by muscarinic receptors. Recently, we observed that in a ring preparation from the rabbit thoracic aorta, ACh produced marked relaxation at concentrations lower than those required to produce contraction (confirming an earlier report by Jelliffe). In investigating this apparent discrepancy, we discovered that the loss of relaxation of ACh in the case of the strip was the result of unintentional rubbing of its intimal surface against foreign surfaces during its preparation. If care was taken to avoid rubbing of the intimal surface during preparation, the tissue, whether ring, transverse strip or helical strip, always exhibited relaxation to ACh, and the possibility was considered that rubbing of the intimal surface had removed endothelial cells. We demonstrate here that relaxation of isolated preparations of rabbit thoracic aorta and other blood vessels by ACh requires the presence of endothelial cells, and that ACh, acting on muscarinic receptors of these cells, stimulates release of a substance(s) that causes relaxation of the vascular smooth muscle. We propose that this may be one of the principal mechanisms for ACh-induced vasodilation in vivo. Preliminary reports on some aspects of the work have been reported elsewhere.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impaired nociception and pain sensation in mice lacking the capsaicin receptor.

            The capsaicin (vanilloid) receptor VR1 is a cation channel expressed by primary sensory neurons of the "pain" pathway. Heterologously expressed VR1 can be activated by vanilloid compounds, protons, or heat (>43 degrees C), but whether this channel contributes to chemical or thermal sensitivity in vivo is not known. Here, we demonstrate that sensory neurons from mice lacking VR1 are severely deficient in their responses to each of these noxious stimuli. VR1-/- mice showed normal responses to noxious mechanical stimuli but exhibited no vanilloid-evoked pain behavior, were impaired in the detection of painful heat, and showed little thermal hypersensitivity in the setting of inflammation. Thus, VR1 is essential for selective modalities of pain sensation and for tissue injury-induced thermal hyperalgesia.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli

                Bookmark

                Author and article information

                Contributors
                liucy@sdu.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 May 2017
                18 May 2017
                2017
                : 7
                : 2063
                Affiliations
                [1 ]ISNI 0000 0004 1761 1174, GRID grid.27255.37, Department of Physiology, School of Basic Medical Sciences, , Shandong University Cheeloo Medical College, ; Shandong, China
                [2 ]ISNI 0000 0004 1761 1174, GRID grid.27255.37, Provincial Key Lab of Mental Disorder, School of Basic Medical Sciences, , Shandong University Cheeloo Medical College, ; Shandong, China
                Author information
                http://orcid.org/0000-0002-8615-3897
                Article
                2275
                10.1038/s41598-017-02275-1
                5437002
                28522805
                947c19c7-a20c-4b6d-a9b4-51a972de5c25
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 December 2016
                : 10 April 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article