4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Application of deep learning methods in biological networks

      , , , ,
      Briefings in Bioinformatics
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The increase in biological data and the formation of various biomolecule interaction databases enable us to obtain diverse biological networks. These biological networks provide a wealth of raw materials for further understanding of biological systems, the discovery of complex diseases and the search for therapeutic drugs. However, the increase in data also increases the difficulty of biological networks analysis. Therefore, algorithms that can handle large, heterogeneous and complex data are needed to better analyze the data of these network structures and mine their useful information. Deep learning is a branch of machine learning that extracts more abstract features from a larger set of training data. Through the establishment of an artificial neural network with a network hierarchy structure, deep learning can extract and screen the input information layer by layer and has representation learning ability. The improved deep learning algorithm can be used to process complex and heterogeneous graph data structures and is increasingly being applied to the mining of network data information. In this paper, we first introduce the used network data deep learning models. After words, we summarize the application of deep learning on biological networks. Finally, we discuss the future development prospects of this field.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          SMOTE: Synthetic Minority Over-sampling Technique

          An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of ``normal'' examples with only a small percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deep learning in neural networks: An overview

            In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The graph neural network model.

              Many underlying relationships among data in several areas of science and engineering, e.g., computer vision, molecular chemistry, molecular biology, pattern recognition, and data mining, can be represented in terms of graphs. In this paper, we propose a new neural network model, called graph neural network (GNN) model, that extends existing neural network methods for processing the data represented in graph domains. This GNN model, which can directly process most of the practically useful types of graphs, e.g., acyclic, cyclic, directed, and undirected, implements a function tau(G,n) is an element of IR(m) that maps a graph G and one of its nodes n into an m-dimensional Euclidean space. A supervised learning algorithm is derived to estimate the parameters of the proposed GNN model. The computational cost of the proposed algorithm is also considered. Some experimental results are shown to validate the proposed learning algorithm, and to demonstrate its generalization capabilities.
                Bookmark

                Author and article information

                Journal
                Briefings in Bioinformatics
                Oxford University Press (OUP)
                1467-5463
                1477-4054
                March 2021
                March 22 2021
                May 02 2020
                March 2021
                March 22 2021
                May 02 2020
                : 22
                : 2
                : 1902-1917
                Article
                10.1093/bib/bbaa043
                32363401
                948e36c1-59e9-479e-a72e-66dfceb9309d
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article