9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.

          Related collections

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic and quantitative assessment of the ubiquitin-modified proteome.

          Despite the diverse biological pathways known to be regulated by ubiquitylation, global identification of substrates that are targeted for ubiquitylation has remained a challenge. To globally characterize the human ubiquitin-modified proteome (ubiquitinome), we utilized a monoclonal antibody that recognizes diglycine (diGly)-containing isopeptides following trypsin digestion. We identify ~19,000 diGly-modified lysine residues within ~5000 proteins. Using quantitative proteomics we monitored temporal changes in diGly site abundance in response to both proteasomal and translational inhibition, indicating both a dependence on ongoing translation to observe alterations in site abundance and distinct dynamics of individual modified lysines in response to proteasome inhibition. Further, we demonstrate that quantitative diGly proteomics can be utilized to identify substrates for cullin-RING ubiquitin ligases. Interrogation of the ubiquitinome allows for not only a quantitative assessment of alterations in protein homeostasis fidelity, but also identification of substrates for individual ubiquitin pathway enzymes. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Circulating tumor cells: liquid biopsy of cancer.

            The detection and molecular characterization of circulating tumor cells (CTCs) are one of the most active areas of translational cancer research, with >400 clinical studies having included CTCs as a biomarker. The aims of research on CTCs include (a) estimation of the risk for metastatic relapse or metastatic progression (prognostic information), (b) stratification and real-time monitoring of therapies, (c) identification of therapeutic targets and resistance mechanisms, and (d) understanding metastasis development in cancer patients. This review focuses on the technologies used for the enrichment and detection of CTCs. We outline and discuss the current technologies that are based on exploiting the physical and biological properties of CTCs. A number of innovative technologies to improve methods for CTC detection have recently been developed, including CTC microchips, filtration devices, quantitative reverse-transcription PCR assays, and automated microscopy systems. Molecular-characterization studies have indicated, however, that CTCs are very heterogeneous, a finding that underscores the need for multiplex approaches to capture all of the relevant CTC subsets. We therefore emphasize the current challenges of increasing the yield and detection of CTCs that have undergone an epithelial-mesenchymal transition. Increasing assay analytical sensitivity may lead, however, to a decrease in analytical specificity (e.g., through the detection of circulating normal epithelial cells). A considerable number of promising CTC-detection techniques have been developed in recent years. The analytical specificity and clinical utility of these methods must be demonstrated in large prospective multicenter studies to reach the high level of evidence required for their introduction into clinical practice. © 2012 American Association for Clinical Chemistry
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection, clinical relevance and specific biological properties of disseminating tumour cells.

              Most cancer deaths are caused by haematogenous metastatic spread and subsequent growth of tumour cells at distant organs. Disseminating tumour cells present in the peripheral blood and bone marrow can now be detected and characterized at the single-cell level. These cells are highly relevant to the study of the biology of early metastatic spread and provide a diagnostic source in patients with overt metastases. Here we review the evidence that disseminating tumour cells have a variety of uses for understanding tumour biology and improving cancer treatment.
                Bookmark

                Author and article information

                Contributors
                olivier.gires@med.uni-muenchen.de
                Journal
                Cancer Metastasis Rev
                Cancer Metastasis Rev
                Cancer Metastasis Reviews
                Springer US (New York )
                0167-7659
                1573-7233
                7 June 2020
                7 June 2020
                2020
                : 39
                : 3
                : 969-987
                Affiliations
                [1 ]GRID grid.5252.0, ISNI 0000 0004 1936 973X, Department of Otorhinolaryngology, University Hospital, , LMU Munich, ; Marchioninistr. 15, 81377 Munich, Germany
                [2 ]Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum, Neuherberg, Germany
                [3 ]GRID grid.452206.7, Department of Otorhinolaryngology, , The First Affiliated Hospital of Chongqing Medical University, ; No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
                [4 ]GRID grid.5252.0, ISNI 0000 0004 1936 973X, Institute for Immunology, , LMU Munich, ; Grosshadernerstr. 9, 82152 Planegg, Martinsried, Germany
                [5 ]MPM Capital, Cambridge MA, 450 Kendall Street, Cambridge, MA 02142 USA
                Author information
                https://orcid.org/0000-0002-2292-7064
                Article
                9898
                10.1007/s10555-020-09898-3
                7497325
                32507912
                95719f89-16cb-4c57-81d2-f962103959ee
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: Gi540/3-2
                Funded by: FundRef http://dx.doi.org/10.13039/501100006463, Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie;
                Award ID: BIO1803-0003
                Award Recipient :
                Categories
                Non-Thematic Review
                Custom metadata
                © Springer Science+Business Media, LLC, part of Springer Nature 2020

                Oncology & Radiotherapy
                epcam,carcinoma,metastasis,regulated intramembrane proteolysis,liquid biopsy,epithelial-to-mesenchymal transition

                Comments

                Comment on this article