Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Former premenarcheal gymnasts exhibit site-specific skeletal benefits in adulthood after long-term retirement

      , , , , ,
      Journal of Bone and Mineral Research
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Biomechanical and molecular regulation of bone remodeling.

          Bone is a dynamic tissue that is constantly renewed. The cell populations that participate in this process--the osteoblasts and osteoclasts--are derived from different progenitor pools that are under distinct molecular control mechanisms. Together, these cells form temporary anatomical structures, called basic multicellular units, that execute bone remodeling. A number of stimuli affect bone turnover, including hormones, cytokines, and mechanical stimuli. All of these factors affect the amount and quality of the tissue produced. Mechanical loading is a particularly potent stimulus for bone cells, which improves bone strength and inhibits bone loss with age. Like other materials, bone accumulates damage from loading, but, unlike engineering materials, bone is capable of self-repair. The molecular mechanisms by which bone adapts to loading and repairs damage are starting to become clear. Many of these processes have implications for bone health, disease, and the feasibility of living in weightless environments (e.g., spaceflight).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study.

            To investigate the influence of physical activity on bone mineral accrual during the adolescent years, we analyzed 6 years of data from 53 girls and 60 boys. Physical activity, dietary intakes, and anthropometry were measured every 6 months and dual-energy X-ray absorptiometry scans of the total body (TB), lumbar spine (LS), and proximal femur (Hologic 2000, array mode) were collected annually. Distance and velocity curves for height and bone mineral content (BMC) were fitted for each child at several skeletal sites using a cubic spline procedure, from which ages at peak height velocity (PHV) and peak BMC velocity (PBMCV) were identified. A mean age- and gender-specific standardized activity (Z) score was calculated for each subject based on multiple yearly activity assessments collected up until age of PHV. This score was used to identify active (top quartile), average (middle 2 quartiles), or inactive (bottom quartile) groups. Two-way analysis of covariance, with height and weight at PHV controlled for, demonstrated significant physical activity and gender main effects (but no interaction) for PBMCV, for BMC accrued for 2 years around peak velocity, and for BMC at 1 year post-PBMCV for the TB and femoral neck and for physical activity but not gender at the LS (all p < 0.05). Controlling for maturational and size differences between groups, we noted a 9% and 17% greater TB BMC for active boys and girls, respectively, over their inactive peers 1 year after the age of PBMCV. We also estimated that, on average, 26% of adult TB bone mineral was accrued during the 2 years around PBMCV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts.

              Exercise during growth may contribute to the prevention of osteoporosis by increasing peak bone mineral density (BMD). However, exercise during puberty may be associated with primary amenorrhea and low peak BMD, while exercise after puberty may be associated with secondary amenorrhea and bone loss. As growth before puberty is relatively sex hormone independent, are the prepubertal years the time during which exercise results in higher BMD? Are any benefits retained in adulthood? We measured areal BMD (g/cm2) by dual-energy X-ray absorptiometry in 45 active prepubertal female gymnasts aged 10.4 +/- 0.3 years (mean +/- SEM), 36 retired female gymnasts aged 25.0 +/- 0.9 years, and 50 controls. The results were expressed as a standardized deviation (SD) or Z score adjusted for bone age in prepubertal gymnasts and chronological age in retired gymnasts. In the cross-sectional analyses, areal BMD in the active prepubertal gymnasts was 0.7-1.9 SD higher at the weight-bearing sites than the predicted mean in controls (p < 0.01). The Z scores increased as the duration of training increased (r = 0.32-0.48, p ranging between <0.04 and <0.002). During 12 months, the increase in areal BMD (g/cm2/year) of the total body, spine, and legs in the active prepubertal gymnasts was 30-85% greater than in prepubertal controls (all p < 0.05). In the retired gymnasts, the areal BMD was 0.5-1.5 SD higher than the predicted mean in controls at all sites, except the skull (p ranging between <0.06 and <0.0001). There was no diminution across the 20 years since retirement (mean 8 +/- 1 years), despite the lower frequency and intensity of exercise. The prepubertal years are likely to be an opportune time for exercise to increase bone density. As residual benefits are maintained into adulthood, exercise before puberty may reduce fracture risk after menopause.
                Bookmark

                Author and article information

                Journal
                Journal of Bone and Mineral Research
                J Bone Miner Res
                Wiley-Blackwell
                08840431
                November 2012
                November 16 2012
                : 27
                : 11
                : 2298-2305
                Article
                10.1002/jbmr.1689
                95a51292-e4b7-4ac2-8b27-8cab3a2319da
                © 2012

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article