21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plant pathogens, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts

      ,
      The Journal of Agricultural Science
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references178

          • Record: found
          • Abstract: found
          • Article: not found

          A framework for community interactions under climate change.

          Predicting the impacts of climate change on species is one of the biggest challenges that ecologists face. Predictions routinely focus on the direct effects of climate change on individual species, yet interactions between species can strongly influence how climate change affects organisms at every scale by altering their individual fitness, geographic ranges and the structure and dynamics of their community. Failure to incorporate these interactions limits the ability to predict responses of species to climate change. We propose a framework based on ideas from global-change biology, community ecology, and invasion biology that uses community modules to assess how species interactions shape responses to climate change. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Does global change increase the success of biological invaders?

            Biological invasions are gaining attention as a major threat to biodiversity and an important element of global change. Recent research indicates that other components of global change, such as increases in nitrogen deposition and atmospheric CO2 concentration, favor groups of species that share certain physiological or life history traits. New evidence suggests that many invasive species share traits that will allow them to capitalize on the various elements of global change. Increases in the prevalence of some of these biological invaders would alter basic ecosystem properties in ways that feed back to affect many components of global change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Five potential consequences of climate change for invasive species.

              Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.
                Bookmark

                Author and article information

                Journal
                applab
                The Journal of Agricultural Science
                J. Agric. Sci.
                Cambridge University Press (CUP)
                0021-8596
                1469-5146
                April 2013
                May 23 2012
                : 151
                : 02
                : 163-188
                Article
                10.1017/S0021859612000500
                95c3c823-6919-4048-8122-8fdff18321c6
                © 2012
                History

                Comments

                Comment on this article