2
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing the Reliability of Commercially Available Point of Care in Various Clinical Fields

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          a

          Updated and precise molecular diagnostics are essential in disease identification, treatment and management. Conventional technologies are limited to laboratories, which are expensive, require moderate to great volumes of biological fluids and generally create great discomfort among patients. This review discusses some key features of commercially available point of care (POC) devices, such as time to provide results, accuracy and imprecision, in several medical and veterinary fields. We searched Pubmed/Medline using the keywords “point” “of” “care” “device”, selected papers from 1984 to 2019 on the basis of their content and summarized the features in tables.

          Fast turnaround time and overall good reliability, in terms of accuracy and imprecision, were observed for most of POCs included in the research.

          POC devices are particularly useful for clinicians since they hold the potential to deliver rapid and accurate results in an inexpensive and less invasive way with an overall improvement of patients' quality of life in terms of time spent at the point-of-care and sample volume withdrawn. These features gain great relevance also in the veterinary practice, where patients’ compliance is generally poor, available sample volumes are quite far from the human ones and analysis costs are higher.

          Related collections

          Most cited references364

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Point of care diagnostics: status and future.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Point-of-care nucleic acid testing for infectious diseases.

              Nucleic acid testing for infectious diseases at the point of care is beginning to enter clinical practice in developed and developing countries; especially for applications requiring fast turnaround times, and in settings where a centralized laboratory approach faces limitations. Current systems for clinical diagnostic applications are mainly PCR-based, can only be used in hospitals, and are still relatively complex and expensive. Integrating sample preparation with nucleic acid amplification and detection in a cost-effective, robust, and user-friendly format remains challenging. This review describes recent technical advances that might be able to address these limitations, with a focus on isothermal nucleic acid amplification methods. It briefly discusses selected applications related to the diagnosis and management of tuberculosis, HIV, and perinatal and nosocomial infections. Copyright © 2011. Published by Elsevier Ltd.
                Bookmark

                Author and article information

                Journal
                The Open Public Health Journal
                TOPHJ
                Bentham Science Publishers Ltd.
                1874-9445
                August 30 2019
                August 30 2019
                : 12
                : 1
                : 342-368
                Article
                10.2174/1874944501912010342
                95da8290-78c2-420d-8112-35f09c52b6b5
                © 2019

                https://creativecommons.org/licenses/by/4.0/legalcode

                History

                Medicine,Chemistry,Life sciences
                Medicine, Chemistry, Life sciences

                Comments

                Comment on this article