12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The molecular basis for Toll-like receptor (TLR) recognition of microbial ligands is unknown. We demonstrate that mouse and human TLR5 discriminate between different flagellins, and we use this difference to map the flagellin recognition site on TLR5 to 228 amino acids of the extracellular domain. Through molecular modeling of the TLR5 ectodomain, we identify two conserved surface-exposed regions. Mutagenesis studies demonstrate that naturally occurring amino acid variation in TLR5 residue 268 is responsible for human and mouse discrimination between flagellin molecules. Mutations within one conserved surface identify residues D295 and D367 as important for flagellin recognition. These studies localize flagellin recognition to a conserved surface on the modeled TLR5 structure, providing detailed analysis of the interaction of a TLR with its ligand. These findings suggest that ligand binding at the β sheets results in TLR activation and provide a new framework for understanding TLR–agonist interactions.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of vertebrate Toll-like receptors.

          The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced >70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility.

            Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and activates host inflammatory responses. In this study, we examine the nature of the TLR5-flagellin interaction. With deletional, insertional and alanine-scanning mutagenesis, we precisely mapped the TLR5 recognition site on flagellin to a cluster of 13 amino acid residues that participate in intermolecular interactions within flagellar protofilaments and that are required for bacterial motility. The recognition site is buried in the flagellar filament, and monomeric flagellin, but not the filamentous molecule, stimulated TLR5. Finally, flagellin coprecipitated with TLR5, indicating close physical interaction between the molecules. These studies demonstrate the exquisite ability of the innate immune system to precisely target a conserved site on flagellin that is essential for bacterial motility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens.

              Macrophages orchestrate innate immunity by phagocytosing pathogens and coordinating inflammatory responses. Effective defence requires the host to discriminate between different pathogens. The specificity of innate immune recognition in Drosophila is mediated by the Toll family of receptors; Toll mediates anti-fungal responses, whereas 18-wheeler mediates anti-bacterial defence. A large number of Toll homologues have been identified in mammals, and Toll-like receptor 4 is critical in responses to Gram-negative bacteria. Here we show that Toll-like receptor 2 is recruited specifically to macrophage phagosomes containing yeast, and that a point mutation in the receptor abrogates inflammatory responses to yeast and Gram-positive bacteria, but not to Gram-negative bacteria. Thus, during the phagocytosis of pathogens, two classes of innate immune receptors cooperate to mediate host defence: phagocytic receptors, such as the mannose receptor, signal particle internalization, and the Toll-like receptors sample the contents of the vacuole and trigger an inflammatory response appropriate to defence against the specific organism.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                19 February 2007
                : 204
                : 2
                : 393-403
                Affiliations
                [1 ]Institute for Systems Biology, Seattle, WA 98103
                [2 ]Department of Immunology and [3 ]Department of Pathology, University of Washington, Seattle, WA 98195
                [4 ]Biology Department and [5 ]Courant Computer Science Department, New York University, New York, NY 10003
                [6 ]Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
                Author notes

                CORRESPONDENCE Alan Aderem: aderem@ 123456systemsbiology.org

                Article
                20061400
                10.1084/jem.20061400
                2118731
                17283206
                963a6d01-e753-44ae-bff0-411315ab8077
                Copyright © 2007, The Rockefeller University Press
                History
                : 30 June 2006
                : 11 January 2007
                Categories
                Articles
                Article

                Medicine
                Medicine

                Comments

                Comment on this article