13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Soil Fungal Communities Investigated by Metabarcoding Within Simulated Forensic Burial Contexts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Decomposition of animal bodies in the burial environment plays a key role in the biochemistry of the soil, altering the balance of the local microbial populations present before the introduction of the carcass. Despite the growing number of studies on decomposition and soil bacterial populations, less is known on its effects on fungal communities. Shifts in the fungal populations at different post-mortem intervals (PMIs) could provide insights for PMI estimation and clarify the role that specific fungal taxa have at specific decomposition stages. In this study, we buried pig carcasses over a period of 1- to 6-months, and we sampled the soil in contact with each carcass at different PMIs. We performed metabarcoding analysis of the mycobiome targeting both the internal transcribed spacer (ITS) 1 and 2, to elucidate which one was more suitable for this purpose. Our results showed a decrease in the fungal taxonomic richness associated with increasing PMIs, and the alteration of the soil fungal signature even after 6 months post-burial, showing the inability of soil communities to restore their original composition within this timeframe. The results highlighted taxonomic trends associated with specific PMIs, such as the increase of the Mortierellomycota after 4- and 6-months and of Ascomycota particularly after 2 months, and the decrease of Basidiomycota from the first to the last time point. We have found a limited number of taxa specifically associated with the carrion and not present in the control soil, showing that the major contributors to the recorded changes are originated from the soil and were not introduced by the carrion. As this is the first study conducted on burial graves, it sets the baseline for additional studies to investigate the role of fungal communities on prolonged decomposition periods and to identify fungal biomarkers to improve the accuracy of PMI prediction for forensic applications.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities.

          Ultra-high-throughput sequencing (HTS) of fungal communities has been restricted by short read lengths and primer amplification bias, slowing the adoption of newer sequencing technologies to fungal community profiling. To address these issues, we evaluated the performance of several common internal transcribed spacer (ITS) primers and designed a novel primer set and work flow for simultaneous quantification and species-level interrogation of fungal consortia. Primer comparison and validation were predicted in silico and by sequencing a "mock community" of mixed yeast species to explore the challenges of amplicon length and amplification bias for reconstructing defined yeast community structures. The amplicon size and distribution of this primer set are smaller than for all preexisting ITS primer sets, maximizing sequencing coverage of hypervariable ITS domains by very-short-amplicon, high-throughput sequencing platforms. This feature also enables the optional integration of quantitative PCR (qPCR) directly into the HTS preparatory work flow by substituting qPCR with these primers for standard PCR, yielding quantification of individual community members. The complete work flow described here, utilizing any of the qualified primer sets evaluated, can rapidly profile mixed fungal communities and capably reconstructed well-characterized beer and wine fermentation fungal communities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ITS1 versus ITS2 as DNA metabarcodes for fungi.

            The nuclear ribosomal Internal Transcribed Spacer ITS region is widely used as a DNA metabarcoding marker to characterize the diversity and composition of fungal communities. In amplicon pyrosequencing studies of fungal diversity, one of the spacers ITS1 or ITS2 of the ITS region is normally used. In this methodological study we evaluate the usability of ITS1 vs. ITS2 as a DNA metabarcoding marker for fungi. We analyse three data sets: two comprising ITS1 and ITS2 sequences of known taxonomic affiliations and a third comprising ITS1 and ITS2 environmental amplicon pyrosequencing data. Clustering analyses of sequences with known taxonomy using the bioinformatics pipeline ClustEx revealed that a 97% similarity cut-off represent a reasonable threshold for estimating the number of known species in the data sets for both ITS1 and ITS2. However, no single threshold value worked well for all fungi at the same time within the curated UNITE database, and we found that the Operational Taxonomic Unit (OTU) concept is not easily translated into the level of species because many species are distributed over several clusters. Clustering analyses of the 134 692 ITS1 and ITS2 pyrosequences using a 97% similarity cut-off revealed a high similarity between the two data sets when it comes to taxonomic coverage. Although some groups are under- or unrepresented in the two data sets due to, e.g. primer mismatches, our results indicate that ITS1 and ITS2 to a large extent yield similar results when used as DNA metabarcodes for fungi. © 2013 Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems.

              Carrion provides a resource for a subset of animal species that deliver a critical ecosystem service by consuming dead animal matter and recycling its nutrients. A growing number of studies have also shown various effects of carrion on different plant and microbial communities. However, there has been no review of these studies to bring this information together and identify priority areas for future research. We review carrion ecology studies from the last two decades and summarise the range of spatial and temporal effects of carrion on soil nutrients, microbes, plants, arthropods, and vertebrates. We identify key knowledge gaps in carrion ecology, and discuss how closing these gaps can be achieved by focusing future research on the (1) different kinds of carrion resources, (2) interactions between different components of the carrion community, (3) the ways that ecosystem context can moderate carrion effects, and (4) considerations for carrion management. To guide this research, we outline a framework that builds on the 'ephemeral resource patch' concept, and helps to structure research questions that link localised effects of carrion with their consequences at landscape scales. This will enable improved characterisation of carrion as a unique resource pool, provide answers for land managers in a position to influence carrion availability, and establish the ways that carrion affects the dynamics of species diversity and ecological processes within landscapes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                24 July 2020
                2020
                : 11
                : 1686
                Affiliations
                [1] 1Manchester Institute of Biotechnology, The University of Manchester , Manchester, United Kingdom
                [2] 2Istituto per la Protezione Sostenibile delle Piante , CNR, Turin, Italy
                [3] 3Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino , Turin, Italy
                [4] 4School of Applied Sciences, University of Huddersfield , Huddersfield, United Kingdom
                [5] 5School of Natural Sciences, The University of Manchester , Manchester, United Kingdom
                Author notes

                Edited by: Gulnaz T. Javan, Alabama State University, United States

                Reviewed by: DeEtta Kay Mills, Florida International University, United States; Sheree J. Finley, Alabama State University, United States

                Present address: Noemi Procopio, The Forensic Science Unit, Faculty of Health and Life Sciences, School of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom

                This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.01686
                7393272
                96e6a207-0b30-4c09-a10c-fff817252f6a
                Copyright © 2020 Procopio, Ghignone, Voyron, Chiapello, Williams, Chamberlain, Mello and Buckley.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 May 2020
                : 29 June 2020
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 58, Pages: 16, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                microbial ecology,next-generation sequencing,fungal communities,necrobiome,post-mortem interval,vertebrate decomposition,forensic science

                Comments

                Comment on this article