0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Main environmental variables influencing the abundance of plant species under risk category

      Journal of Forestry Research
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Determining climatic and physiographic variables in Mexico's major ecoregions that are limiting to biodiversity and species of high conservation concern is essential for their conservation. Yet, at the national level to date, few studies have been performed with large data sets and cross-confirmation using multiple statistical analyses. Here, we used 25 endemic, rare and endangered species from 3610 sampling points throughout Mexico and 25 environmental attributes, including average precipitation for different seasons of the year, annual dryness index, slope of the terrain; and maximum, minimum and average temperatures to test our hypothesis that these species could be assessed with the same weight among all variables, showing similar indices of importance. Our results using principal component analysis, covariation analysis by permutations, and random forest regression showed that summer precipitation, length of the frost-free period, spring precipitation, winter precipitation and growing season precipitation all strongly influence the abundance of tropical species. In contrast, annual precipitation and the balance at different seasons (summer and growing season) were the most relevant variables on the temperate region species. For dry areas, the minimum temperature of the coldest month and the maximum temperature of the warmest month were the most significant variables. Using these different associations in different climatic regions could support a more precise management and conservation plan for the preservation of plant species diversity in forests under different global warming scenarios.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Feature Selection with theBorutaPackage

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecological responses to recent climate change.

            There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Concluding Remarks

                Bookmark

                Author and article information

                Journal
                Journal of Forestry Research
                J. For. Res.
                Springer Science and Business Media LLC
                1007-662X
                1993-0607
                August 2022
                December 28 2021
                August 2022
                : 33
                : 4
                : 1209-1217
                Article
                10.1007/s11676-021-01425-6
                976883c8-af20-4f9a-96b1-57b66ed6ba88
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article