0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sex-specific association of exposure to air pollutants and Nrf2 gene expression and inflammatory biomarkers in exhaled breath of healthy adolescents

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies investigating the nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels in the respiratory system of healthy subjects are scarce. Moreover, separate studies on the health-related outcomes of air pollution for each sex are limited. The current panel study investigated sex-specific Nrf2 expression levels and related oxidative stress and inflammatory responses among healthy adolescents exposed to PM2.5, PM10, O3, and PM2.5-bounded metals in a high traffic region. Forty-nine healthy nonsmoking subjects participated in the study for five consecutive months (Nov. 2019 to Feb. 2020). Each subject was asked to provide 1 mL of exhaled breath condensate (EBC). Data were analyzed using linear mixed-effects models. The results showed that PM10, PM2.5, O3, and PM2.5-bounded metals were negatively linked to Nrf2 expression level in EBC of females with -58.3% (95% CI: 79.5, -15.4), -32.1% (95% CI: -50.3, -7.1), -76.2% (95% CI: -92.6, -23.9), and -1.9 (95% CI: -3.4, -0.4), respectively. While our results presented no significant association between the studied pollutants and Nrf2 gene expression in males, significant associations were observed between the pollutants and total nitric oxide (NOx), interleukins 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in the EBC of females. In the case of males, only EBC cytokines showed a significant association with air pollutants. Overall, this study suggests that exposure to ambient air pollutants may affect the respiratory system with biologically different mechanisms in males and females. PM2.5 concentration had a positive correlation with exhaled TNF-α and IL6 values in females while positive correlation with TNF-α and negative correlation with IL6 values in males. O3 had a negative correlation with TNF-α in males.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Environmental and Health Impacts of Air Pollution: A Review

          One of our era's greatest scourges is air pollution, on account not only of its impact on climate change but also its impact on public and individual health due to increasing morbidity and mortality. There are many pollutants that are major factors in disease in humans. Among them, Particulate Matter (PM), particles of variable but very small diameter, penetrate the respiratory system via inhalation, causing respiratory and cardiovascular diseases, reproductive and central nervous system dysfunctions, and cancer. Despite the fact that ozone in the stratosphere plays a protective role against ultraviolet irradiation, it is harmful when in high concentration at ground level, also affecting the respiratory and cardiovascular system. Furthermore, nitrogen oxide, sulfur dioxide, Volatile Organic Compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) are all considered air pollutants that are harmful to humans. Carbon monoxide can even provoke direct poisoning when breathed in at high levels. Heavy metals such as lead, when absorbed into the human body, can lead to direct poisoning or chronic intoxication, depending on exposure. Diseases occurring from the aforementioned substances include principally respiratory problems such as Chronic Obstructive Pulmonary Disease (COPD), asthma, bronchiolitis, and also lung cancer, cardiovascular events, central nervous system dysfunctions, and cutaneous diseases. Last but not least, climate change resulting from environmental pollution affects the geographical distribution of many infectious diseases, as do natural disasters. The only way to tackle this problem is through public awareness coupled with a multidisciplinary approach by scientific experts; national and international organizations must address the emergence of this threat and propose sustainable solutions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The pro- and anti-inflammatory properties of the cytokine interleukin-6.

            Interleukin-6 is a cytokine not only involved in inflammation and infection responses but also in the regulation of metabolic, regenerative, and neural processes. In classic signaling, interleukin-6 stimulates target cells via a membrane bound interleukin-6 receptor, which upon ligand binding associates with the signaling receptor protein gp130. Gp130 dimerizes, leading to the activation of Janus kinases and subsequent phosphorylation of tyrosine residues within the cytoplasmic portion of gp130. This leads to the engagement of phosphatase Src homology domains containing tyrosin phosphatase-2 (SHP-2) and activation of the ras/raf/Mitogen-activated protein (MAP) kinase (MAPK) pathway. In addition, signal transducer and activator of transcription factors are recruited, which are phosphorylated, and consequently dimerize whereupon they translocate into the nucleus and activate target genes. Interestingly, only few cells express membrane bound interleukin-6 receptor whereas all cells display gp130 on the cell surface. While cells, which only express gp130, are not responsive to interleukin-6 alone, they can respond to a complex of interleukin-6 bound to a naturally occurring soluble form of the interleukin-6 receptor. Therefore, the generation of soluble form of the interleukin-6 receptor dramatically enlarges the spectrum of interleukin-6 target cells. This process has been named trans-signaling. Here, we review the involvement of both signaling modes in the biology of interleukin-6. It turns out that regenerative or anti-inflammatory activities of interleukin-6 are mediated by classic signaling whereas pro-inflammatory responses of interleukin-6 are rather mediated by trans-signaling. This is important since therapeutic blockade of interleukin-6 by the neutralizing anti-interleukin-6 receptor monoclonal antibody tocilizumab has recently been approved for the treatment of inflammatory diseases. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis.

              The 2(-ΔΔ)(CT) method has been extensively used as a relative quantification strategy for quantitative real-time polymerase chain reaction (qPCR) data analysis. This method is a convenient way to calculate relative gene expression levels between different samples in that it directly uses the threshold cycles (CTs) generated by the qPCR system for calculation. However, this approach relies heavily on an invalid assumption of 100% PCR amplification efficiency across all samples. In addition, the 2(-ΔΔ)(CT) method is applied to data with automatic removal of background fluorescence by the qPCR software. Since the background fluorescence is unknown, subtracting an inaccurate background can lead to distortion of the results. To address these problems, we present an improved method, the individual efficiency corrected calculation.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Environmental Pollution
                Environmental Pollution
                Elsevier BV
                02697491
                June 2023
                June 2023
                : 326
                : 121463
                Article
                10.1016/j.envpol.2023.121463
                36958658
                977c68a9-1655-47a3-a740-6ae4bb0bb384
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article