11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative Stress, Neuroinflammation, and NADPH Oxidase: Implications in the Pathogenesis and Treatment of Alzheimer's Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NADPH oxidase as an important source of intracellular reactive oxygen species (ROS) has gained enormous importance over the years, and the detailed structures of all the isoenzymes of the NADPH oxidase family and their regulation have been well explored. The enzyme has been implicated in a variety of diseases including neurodegenerative diseases. The present brief review examines the body of evidence that links NADPH oxidase with the genesis and progression of Alzheimer's disease (AD). In short, evidence suggests that microglial activation and inflammatory response in the AD brain is associated with increased production of ROS by microglial NADPH oxidase. Along with other inflammatory mediators, ROS take part in neuronal degeneration and enhance the microglial activation process. The review also evaluates the current state of NADPH oxidase inhibitors as potential disease-modifying agents for AD.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease

          Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ROS function in redox signaling and oxidative stress.

            Oxidative stress refers to elevated intracellular levels of reactive oxygen species (ROS) that cause damage to lipids, proteins and DNA. Oxidative stress has been linked to a myriad of pathologies. However, elevated ROS also act as signaling molecules in the maintenance of physiological functions--a process termed redox biology. In this review we discuss the two faces of ROS--redox biology and oxidative stress--and their contribution to both physiological and pathological conditions. Redox biology involves a small increase in ROS levels that activates signaling pathways to initiate biological processes, while oxidative stress denotes high levels of ROS that result in damage to DNA, protein or lipids. Thus, the response to ROS displays hormesis, given that the opposite effect is observed at low levels compared with that seen at high levels. Here, we argue that redox biology, rather than oxidative stress, underlies physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              How mitochondria produce reactive oxygen species

              The production of ROS (reactive oxygen species) by mammalian mitochondria is important because it underlies oxidative damage in many pathologies and contributes to retrograde redox signalling from the organelle to the cytosol and nucleus. Superoxide (O2 •−) is the proximal mitochondrial ROS, and in the present review I outline the principles that govern O2 •− production within the matrix of mammalian mitochondria. The flux of O2 •− is related to the concentration of potential electron donors, the local concentration of O2 and the second-order rate constants for the reactions between them. Two modes of operation by isolated mitochondria result in significant O2 •− production, predominantly from complex I: (i) when the mitochondria are not making ATP and consequently have a high Δp (protonmotive force) and a reduced CoQ (coenzyme Q) pool; and (ii) when there is a high NADH/NAD+ ratio in the mitochondrial matrix. For mitochondria that are actively making ATP, and consequently have a lower Δp and NADH/NAD+ ratio, the extent of O2 •− production is far lower. The generation of O2 •− within the mitochondrial matrix depends critically on Δp, the NADH/NAD+ and CoQH2/CoQ ratios and the local O2 concentration, which are all highly variable and difficult to measure in vivo. Consequently, it is not possible to estimate O2 •− generation by mitochondria in vivo from O2 •−-production rates by isolated mitochondria, and such extrapolations in the literature are misleading. Even so, the description outlined here facilitates the understanding of factors that favour mitochondrial ROS production. There is a clear need to develop better methods to measure mitochondrial O2 •− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2021
                16 April 2021
                : 2021
                : 7086512
                Affiliations
                1Department of Biochemistry, MM Institute of Medical Sciences & Research, Maharishi Markandeshwar Deemed University, Mullana, Ambala, Haryana, India
                2Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
                3Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
                4Department of General Medicine, MM Institute of Medical Sciences & Research, Maharishi Markandeshwar Deemed University, Mullana, Ambala, Haryana, India
                5Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
                Author notes

                Academic Editor: Jos L. Quiles

                Author information
                https://orcid.org/0000-0003-4042-9103
                https://orcid.org/0000-0002-8147-4333
                https://orcid.org/0000-0001-7737-0016
                https://orcid.org/0000-0002-2547-3272
                https://orcid.org/0000-0002-0022-0842
                https://orcid.org/0000-0003-4530-8706
                https://orcid.org/0000-0002-9429-4892
                Article
                10.1155/2021/7086512
                8068554
                33953837
                9799652a-5902-4d37-9a33-091234b6dabf
                Copyright © 2021 Upasana Ganguly et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 July 2020
                : 17 March 2021
                : 3 April 2021
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article