17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Induced Pluripotent Stem Cell Patient Specific Model of Complement Factor H (Y402H) Polymorphism Displays Characteristic Features of Age‐Related Macular Degeneration and Indicates a Beneficial Role for UV Light Exposure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Age‐related macular degeneration (AMD) is the most common cause of blindness, accounting for 8.7% of all blindness globally. Vision loss is caused ultimately by apoptosis of the retinal pigment epithelium (RPE) and overlying photoreceptors. Treatments are evolving for the wet form of the disease; however, these do not exist for the dry form. Complement factor H polymorphism in exon 9 (Y402H) has shown a strong association with susceptibility to AMD resulting in complement activation, recruitment of phagocytes, RPE damage, and visual decline. We have derived and characterized induced pluripotent stem cell (iPSC) lines from two subjects without AMD and low‐risk genotype and two patients with advanced AMD and high‐risk genotype and generated RPE cells that show local secretion of several proteins involved in the complement pathway including factor H, factor I, and factor H‐like protein 1. The iPSC RPE cells derived from high‐risk patients mimic several key features of AMD including increased inflammation and cellular stress, accumulation of lipid droplets, impaired autophagy, and deposition of “drüsen”‐like deposits. The low‐ and high‐risk RPE cells respond differently to intermittent exposure to UV light, which leads to an improvement in cellular and functional phenotype only in the high‐risk AMD‐RPE cells. Taken together, our data indicate that the patient specific iPSC model provides a robust platform for understanding the role of complement activation in AMD, evaluating new therapies based on complement modulation and drug testing. S tem C ells 2017;35:2305–2320

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Drusen proteome analysis: an approach to the etiology of age-related macular degeneration.

          Drusen are extracellular deposits that accumulate below the retinal pigment epithelium on Bruch's membrane and are risk factors for developing age-related macular degeneration (AMD). The progression of AMD might be slowed or halted if the formation of drusen could be modulated. To work toward a molecular understanding of drusen formation, we have developed a method for isolating microgram quantities of drusen and Bruch's membrane for proteome analysis. Liquid chromatography tandem MS analyses of drusen preparations from 18 normal donors and five AMD donors identified 129 proteins. Immunocytochemical studies have thus far localized approximately 16% of these proteins in drusen. Tissue metalloproteinase inhibitor 3, clusterin, vitronectin, and serum albumin were the most common proteins observed in normal donor drusen whereas crystallin was detected more frequently in AMD donor drusen. Up to 65% of the proteins identified were found in drusen from both AMD and normal donors. However, oxidative protein modifications were also observed, including apparent crosslinked species of tissue metalloproteinase inhibitor 3 and vitronectin, and carboxyethyl pyrrole protein adducts. Carboxyethyl pyrrole adducts are uniquely generated from the oxidation of docosahexaenoate-containing lipids. By Western analysis they were found to be more abundant in AMD than in normal Bruch's membrane and were found associated with drusen proteins. Carboxymethyl lysine, another oxidative modification, was also detected in drusen. These data strongly support the hypothesis that oxidative injury contributes to the pathogenesis of AMD and suggest that oxidative protein modifications may have a critical role in drusen formation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited.

            During the past ten years, dramatic advances have been made in unraveling the biological bases of age-related macular degeneration (AMD), the most common cause of irreversible blindness in western populations. In that timeframe, two distinct lines of evidence emerged which implicated chronic local inflammation and activation of the complement cascade in AMD pathogenesis. First, a number of complement system proteins, complement activators, and complement regulatory proteins were identified as molecular constituents of drusen, the hallmark extracellular deposits associated with early AMD. Subsequently, genetic studies revealed highly significant statistical associations between AMD and variants of several complement pathway-associated genes including: Complement factor H (CFH), complement factor H-related 1 and 3 (CFHR1 and CFHR3), complement factor B (CFB), complement component 2 (C2), and complement component 3 (C3). In this article, we revisit our original hypothesis that chronic local inflammatory and immune-mediated events at the level of Bruch's membrane play critical roles in drusen biogenesis and, by extension, in the pathobiology of AMD. Secondly, we report the results of a new screening for additional AMD-associated polymorphisms in a battery of 63 complement-related genes. Third, we identify and characterize the local complement system in the RPE-choroid complex - thus adding a new dimension of biological complexity to the role of the complement system in ocular aging and AMD. Finally, we evaluate the most salient, recent evidence that bears directly on the role of complement in AMD pathogenesis and progression. Collectively, these recent findings strongly re-affirm the importance of the complement system in AMD. They lay the groundwork for further studies that may lead to the identification of a transcriptional disease signature of AMD, and hasten the development of new therapeutic approaches that will restore the complement-modulating activity that appears to be compromised in genetically susceptible individuals. Copyright 2009 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD.

              Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.
                Bookmark

                Author and article information

                Contributors
                majlinda.lako@ncl.ac.uk
                Journal
                Stem Cells
                Stem Cells
                10.1002/(ISSN)1549-4918
                STEM
                Stem Cells (Dayton, Ohio)
                John Wiley and Sons Inc. (Hoboken )
                1066-5099
                1549-4918
                09 October 2017
                November 2017
                : 35
                : 11 ( doiID: 10.1002/stem.v35.11 )
                : 2305-2320
                Affiliations
                [ 1 ] Institute of Genetic Medicine, International Centre for Life United Kingdom
                [ 2 ] Campus for Ageing and Vitality Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Newcastle upon Tyne United Kingdom
                [ 3 ] Department of Biosciences Durham University Durham United Kingdom
                [ 4 ] Princess Al Jawhara Al‐Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University Saudi Arabia
                [ 5 ] Clinical and Experimental Sciences, Faculty of Medicine University of Southampton Southampton United Kingdom
                [ 6 ] Leeds Teaching Hospital NHS Leeds United Kingdom
                Author notes
                [*] [* ]Correspondence: Majlinda Lako, Ph.D., Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3 BZ, United Kingdom. Telephone: 44‐191‐241‐8688; e‐mail: majlinda.lako@ 123456ncl.ac.uk
                Author information
                http://orcid.org/0000-0003-1327-8573
                Article
                STEM2708
                10.1002/stem.2708
                5698780
                28913923
                97ad8b33-8b3e-41e8-8743-28ddd270f331
                © 2017 The Authors S tem C ells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 April 2017
                : 21 August 2017
                : 07 September 2017
                Page count
                Figures: 7, Tables: 0, Pages: 16, Words: 10498
                Funding
                Funded by: Macular Society U.K.
                Funded by: FP7 Ideas, European Research Council
                Award ID: 614620
                Funded by: Biotechnology and Biological Sciences Research Council
                Award ID: BB/I020209/1
                Categories
                Translational and Clinical Research
                Induced Stem Cells
                Aging
                Translational and Clinical Research
                Translational and Clinical Research
                Custom metadata
                2.0
                stem2708
                November 2017
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.6 mode:remove_FC converted:22.11.2017

                Molecular medicine
                age‐related macular degeneration,complement factor h,induced pluripotent stem cell,retinal pigment epithelium

                Comments

                Comment on this article