29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intracochlear PLGA based implants for dexamethasone release: Challenges and solutions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Abstract

          The effective treatment of diseases of the inner ear is currently an unmet medical need. Local controlled drug delivery to the cochlea is challenging due to the hidden location, small volume and high sensitivity of this organ. A local intracochlear delivery of drugs would avoid the problems of intratympanic (extracochlear) drug application, but is more invasive. The requirements for such a delivery system include a small size and appropriate flexibility. The delivery device must be rigid enough for surgical handling but also flexible to avoid traumatizing cochlear structures. We developed biodegradable dexamethasone loaded PLGA extrudates for the controlled intracochlear release. In order to achieve the desired flexibility, Polyethylene glycol (PEG) was used as a plasticizer. In addition to the drug release, the extrudates were characterized in vitro by differential scanning calorimetry (DSC) and texture analysis. Simulation of the pharmacokinetics of the inner ear support the expectation that a constant perilymph drug level is obtained after few hours and retained over several weeks. Ex vivo implantation of the extrudates into a guinea pig cochlea indicate that PEG containing extrudates have the desired balance between mechanical strength and flexibility for direct implantation into the cochlea. The location of the implant was visualized by computer tomography. In summary, we postulate that intracochlear administration of drug releasing biodegradable implants is a new and promising approach to achieve local drug delivery to the cochlea for an extended time.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems--a review.

          Poly(D,L-lactic-co-glycolic acid) (PLGA) is the most frequently used biodegradable polymer in the controlled release of encapsulated drugs. Understanding the release mechanisms, as well as which factors that affect drug release, is important in order to be able to modify drug release. Drug release from PLGA-based drug delivery systems is however complex. This review focuses on release mechanisms, and provides a survey and analysis of the processes determining the release rate, which may be helpful in elucidating this complex picture. The term release mechanism and the various techniques that have been used to study release mechanisms are discussed. The physico-chemical processes that influence the rate of drug release and the various mechanisms of drug release that have been reported in the literature are analyzed in this review, and practical examples are given. The complexity of drug release from PLGA-based drug delivery systems can make the generalization of results and predictions of drug release difficult. However, this complexity also provides many possible ways of solving problems and modifying drug release. Basic, generally applicable and mechanistic research provides pieces of the puzzle, which is useful in the development of controlled-release pharmaceuticals. Copyright © 2011 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles of local drug delivery to the inner ear.

            As more and more substances have been shown in preclinical studies to be capable of preventing damage to the inner ear from exposure to noise, ototoxic drugs, ischemia, infection, inflammation, mechanical trauma and other insults, it is becoming very important to develop feasible and safe methods for the targeted delivery of drugs to specific regions in the inner ear. Recently developed methods for sampling perilymph from the cochlea have overcome major technical problems that have distorted previous pharmacokinetic studies of the ear. These measurements show that drug distribution in perilymph is dominated by passive diffusion, resulting in large gradients along the cochlea when drugs are applied intratympanically. Therefore, in order to direct drugs to specific regions of the ear, a variety of delivery strategies are required. To target drugs to the basal cochlear turn and vestibular system while minimizing exposure of the apical cochlear turns, single one-shot intratympanic applications are effective. To increase the amount of drug reaching the apical cochlear turns, repeated intratympanic injections or controlled-release drug delivery systems, such as biodegradable biopolymers or catheters and pumps, are more effective. However, if the applied substance does not easily pass through the round window membrane, or if a more widespread distribution of drug in the ear is required, then intralabyrinthine injections of the substance may be required. Intralabyrinthine injection procedures, which are currently in development in animals, have not yet been proven safe enough for human use. (c) 2009 S. Karger AG, Basel.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications

              Local drug delivery to the ear has gained wide clinical acceptance, with the choice of drug and application protocol in humans largely empirically-derived. Here, we review the pharmacokinetics underlying local therapy of the ear using the drugs commonly used in clinical practice as examples. Based on molecular properties and perilymph measurements interpreted through computer simulations we now better understand the principles underlying entry and distribution of these and other drugs in the ear. From our analysis, we have determined that dexamethasone-phosphate, a pro-drug widely-used clinically, has molecular and pharmacokinetic properties that make it ill-suited for use as a local therapy for hearing disorders. This polar form of dexamethasone, used as a more soluble agent in intravenous preparations, passes less readily through lipid membranes, such as those of the epithelia restricting entry at the round window membrane and stapes. Once within the inner ear, dexamethasone-phosphate is cleaved to the active form, dexamethasone, which is less polar, passes more readily through lipid membranes of the blood-perilymph barrier and is rapidly eliminated from perilymph without distributing to apical cochlear regions. Dexamethasone-phosphate therefore provides only a brief exposure of the basal regions of the cochlea to active drug. Other steroids, such as triamcinolone-acetonide, exhibit pharmacokinetic properties more appropriate to the ear and merit more detailed consideration.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Pharm X
                Int J Pharm X
                International Journal of Pharmaceutics: X
                Elsevier
                2590-1567
                21 May 2019
                December 2019
                21 May 2019
                : 1
                : 100015
                Affiliations
                [a ]Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
                [b ]Department of Nuclear Medicine, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
                [c ]Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
                Author notes
                Article
                S2590-1567(19)30029-5 100015
                10.1016/j.ijpx.2019.100015
                6733303
                31517280
                97b31d4c-5e75-4401-88e3-968d378540f3
                © 2019 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 February 2019
                : 17 May 2019
                : 17 May 2019
                Categories
                Article

                biodegradable polymer,plga,dexamethasone,cochlea,implant,controlled release

                Comments

                Comment on this article