1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adsorption of proteins to fluid interfaces: Role of the hydrophobic subphase

      , ,
      Journal of Colloid and Interface Science
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells

          The mechanism of spontaneous assembly of microscale compartments is a central question for the origin of life, and has technological repercussions in diverse areas such as materials science, catalysis, biotechnology and biomedicine. Such compartments need to be semi-permeable, structurally robust and capable of housing assemblages of functional components for internalized chemical transformations. In principle, proteins should be ideal building blocks for the construction of membrane-bound compartments but protein vesicles with cell-like properties are extremely rare. Here we present an approach to the interfacial assembly of protein-based micro-compartments (proteinosomes) that are delineated by a semi-permeable, stimulus-responsive, enzymatically active, elastic membrane consisting of a closely packed monolayer of conjugated protein-polymer building blocks. The proteinosomes can be dispersed in oil or water, thermally cycled to temperatures of 70 °C, and partially dried and re-inflated without loss of structural integrity. As a consequence, they exhibit protocellular properties such as guest molecule encapsulation, selective permeability, gene-directed protein synthesis and membrane-gated internalized enzyme catalysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein adsorption at the oil/water interface: characterization of adsorption kinetics by dynamic interfacial tension measurements.

            The dynamics of protein adsorption at an oil/water interface are examined over time scales ranging from seconds to several hours. The pendant drop technique is used to determine the dynamic interfacial tension of several proteins at the heptane/aqueous buffer interface. The kinetics of adsorption of these proteins are interpreted from tension/log time plots, which often display three distinct regimes. (I) Diffusion and protein interfacial affinity determine the duration of an initial induction period of minimal tension reduction. A comparison of surface pressure profiles at the oil/water and air/water interface reveals the role of interfacial conformational changes in the early stages of adsorption. (II) Continued rearrangement defines the second regime, where the resulting number of interfacial contacts per protein molecule causes a steep tension decline. (III) The final regime occurs upon monolayer coverage, and is attributed to continued relaxation of the adsorbed layer and possible build-up of multilayers. Denaturation of proteins by urea in the bulk phase is shown to affect early regimes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interfacial rheological properties of adsorbed protein layers and surfactants: a review.

              Proteins and low molecular weight (LMW) surfactants are widely used for the physical stabilisation of many emulsions and foam based food products. The formation and stabilisation of these emulsions and foams depend strongly on the interfacial properties of the proteins and the LMW surfactants. Therefore these properties have been studied extensively. In this review an overview is given of interfacial properties of proteins at a mesoscopic scale and the effect of LMW surfactants (emulsifiers) on them. Properties addressed are the adsorbed amount, surface tension (reduction), network formation at interfaces and possible conformational changes during and after adsorption. Special attention is given to interfacial rheological behaviour of proteins at expanding and compressing interfaces, which simulate the behaviour in real emulsions and foams. It will be illustrated that information on interfacial rheological properties, protein conformation and interactions between adsorbed molecules can be obtained by changing experimental conditions. The relation between interfacial rheology and emulsion and foam stabilisation is subsequently addressed. It is concluded that there is a need for new measuring devices that monitor several interfacial properties on a mesoscopic and microscopic scale at the same time, and for physical models describing the various processes of importance for proteins. Real progress will only be possible if both are combined in an innovative way.
                Bookmark

                Author and article information

                Journal
                Journal of Colloid and Interface Science
                Journal of Colloid and Interface Science
                Elsevier BV
                00219797
                February 2021
                February 2021
                : 584
                : 411-417
                Article
                10.1016/j.jcis.2020.09.118
                33091866
                97ce4779-bc8d-4f1e-ae4f-7e961b430e26
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article