56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Fluorescent carbon dots (Cdots) have attracted increasing attention due to their potential applications in sensing, catalysis, and biomedicine. Currently, intensive research has been concentrated on the synthesis and imaging-guided therapy of these benign photoluminescent materials. Meanwhile, Cdots have been explored as nonviral vector for nucleic acid or drug delivery by chemical modification on purpose.

          Results

          We have developed a microwave assisted one-step synthesis of Cdots with citric acid as carbon source and tryptophan (Trp) as both nitrogen source and passivation agent. The Cdots with uniform size show superior water solubility, excellent biocompatibility, and high quantum yield. Afterwards, the PEI (polyethylenimine)-adsorbed Cdots nanoparticles (Cdots@PEI) were applied to deliver Survivin siRNA into human gastric cancer cell line MGC-803. The results have confirmed the nanocarrier exhibited excellent biocompatibility and a significant increase in cellular delivery of siRNA, inducing efficient knockdown for Survivin protein to 6.1%. In addition, PEI@Cdots complexes mediated Survivin silencing, the arrested cell cycle progression in G 1 phase as well as cell apoptosis was observed.

          Conclusion

          The Cdots-based and PEI-adsorbed complexes both as imaging agents and siRNA nanocarriers have been developed for Survivin siRNA delivery. And the results indicate that Cdots-based nanocarriers could be utilized in a broad range of siRNA delivery systems for cancer therapy.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12951-014-0058-0) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Probing the Cytotoxicity of Semiconductor Quantum Dots

          With their bright, photostable fluorescence, semiconductor quantum dots show promise as alternatives to organic dyes for biological labeling. Questions about their potential cytotoxicity, however, remain unanswered. While cytotoxicity of bulk cadmium selenide (CdSe) is well documented, a number of groups have suggested that CdSe QDs are cytocompatible, at least with some immortalized cell lines. Using primary hepatocytes as a liver model, we found that CdSe-core QDs were indeed acutely toxic under certain conditions. Specifically, we found that the cytotoxicity of QDs was modulated by processing parameters during synthesis, exposure to ultraviolet light, and surface coatings. Our data further suggests that cytotoxicity correlates with the liberation of free Cd2+ ions due to deterioration of the CdSe lattice. When appropriately coated, CdSe-core QDs can be rendered non-toxic and used to track cell migration and reorganization in vitro. Our results inform design criteria for the use of QDs in vitro and especially in vivo where deterioration over time may occur.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence.

            Polyethylenimine (PEI) functionalized carbon dots (CD-PEI) were fabricated by one-step microwave assisted pyrolysis of glycerol and branched PEI25k mixture where the formation of carbon nanoparticles and the surface passivation were accomplished simultaneously. In this hybrid C-dot, PEI molecule played two key roles in the system - as a nitrogen-rich compound to passivate surface to enhance the fluorescence and as a polyelectrolyte to condense DNA. This CD-PEI was shown to be water soluble and emit stable bright multicolor fluorescence relying on excitation wavelength. The DNA condensation capability and cytotoxicity of CD-PEI could be regulated by pyrolysis time possibly due to the somewhat destruction of PEI during the formation of carbon dots. CD-PEI obtained at an appropriate pyrolysis time exhibited lower toxicity, higher or comparable gene expression of plasmid DNA in COS-7 cells and HepG2 cells relative to control PEI25k. Intriguingly, the CD-PEIs internalized into cells displayed tunable fluorescent emission under varying excitation wavelength, suggesting the potential application of CD-PEI in gene delivery and bioimaging. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antiviral RNA interference in mammalian cells.

              In antiviral RNA interference (RNAi), the DICER enzyme processes virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that guide ARGONAUTE proteins to silence complementary viral RNA. As a counterdefense, viruses deploy viral suppressors of RNAi (VSRs). Well-established in plants and invertebrates, the existence of antiviral RNAi remains unknown in mammals. Here, we show that undifferentiated mouse cells infected with encephalomyocarditis virus (EMCV) or Nodamura virus (NoV) accumulate ~22-nucleotide RNAs with all the signature features of siRNAs. These derive from viral dsRNA replication intermediates, incorporate into AGO2, are eliminated in Dicer knockout cells, and decrease in abundance upon cell differentiation. Furthermore, genetically ablating a NoV-encoded VSR that antagonizes DICER during authentic infections reduces NoV accumulation, which is rescued in RNAi-deficient mouse cells. We conclude that antiviral RNAi operates in mammalian cells.
                Bookmark

                Author and article information

                Contributors
                814305866@qq.com
                chunleizhang@sjtu.edu.cn
                gxshen@sjtu.edu.cn
                meijer124@163.com
                hfu@sjtu.edu.cn
                dxcui@sjtu.edu.cn
                Journal
                J Nanobiotechnology
                J Nanobiotechnology
                Journal of Nanobiotechnology
                BioMed Central (London )
                1477-3155
                30 December 2014
                30 December 2014
                2014
                : 12
                : 1
                : 58
                Affiliations
                [ ]School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
                [ ]Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
                Article
                58
                10.1186/s12951-014-0058-0
                4304159
                25547381
                97dd3230-7197-4693-9c44-979d70a11664
                © Wang et al.; licensee BioMed Central. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 28 October 2014
                : 5 December 2014
                Categories
                Research
                Custom metadata
                © The Author(s) 2014

                Biotechnology
                carbon dots,sirna interference therapy,gastric cancer,nanocarriers
                Biotechnology
                carbon dots, sirna interference therapy, gastric cancer, nanocarriers

                Comments

                Comment on this article