Blog
About

6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Activity of Endothelium-Derived Hyperpolarizing Factor Is Augmented in Monocrotaline-Induced Pulmonary Hypertension of Rat Lungs

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanism of endothelium-dependent vasodilator signaling involves three components such as nitric oxide, prostacyclin, and endothelium-derived hyperpolarizing factor (EDHF). Although EDHF is distinct from nitric oxide and prostacyclin, it requires activation of Ca<sup>2+</sup>-sensitive K<sup>+</sup> channels (K<sub>Ca</sub>) and cytochrome P<sub>450</sub> metabolites. However, the physiological role of EDHF in the pulmonary circulation is unclear. Thus, we tested if EDHF would regulate vascular tone in rat lungs of control and monocrotaline (MCT)-induced pulmonary hypertension. Inhibition of EDHF with a combination of K<sub>Ca</sub> blockers, charybdotoxin (50 n M) plus apamin (50 n M), increased baseline vascular tone in MCT-induced hypertensive lungs. Thapsigargin (TG; 100 n M), an inhibitor of Ca-ATPase, caused greater EDHF-mediated vasodilation in MCT-induced hypertensive lungs. TG-induced vasodilation was abolished with the charybdotoxin-apamin combination. Sulfaphenazole (10 µ M), a cytochrome P<sub>450</sub> inhibitor, reduced the TG-induced vasodilation in MCT-induced hypertensive lungs. RT-PCR analysis exhibited an increase in K<sub>Ca</sub> mRNA in MCT-treated lungs. These results indicate the augmentation of tonic EDHF activity, at least in part, through the alteration in cytochrome P<sub>450</sub> metabolites and the upregulation of K<sub>Ca</sub> expression in MCT-induced pulmonary hypertension.

          Related collections

          Most cited references 39

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines.

          To test the hypothesis that nitric oxide (NO) limits endothelial activation, we treated cytokine-stimulated human saphenous vein endothelial cells with several NO donors and assessed their effects on the inducible expression of vascular cell adhesion molecule-1 (VCAM-1). In a concentration-dependent manner, NO inhibited interleukin (IL)-1 alpha-stimulated VCAM-1 expression by 35-55% as determined by cell surface enzyme immunoassays and flow cytometry. This inhibition was paralleled by reduced monocyte adhesion to endothelial monolayers in nonstatic assays, was unaffected by cGMP analogues, and was quantitatively similar after stimulation by either IL-1 alpha, IL-1 beta, IL-4, tumor necrosis factor (TNF alpha), or bacterial lipopolysaccharide. NO also decreased the endothelial expression of other leukocyte adhesion molecules (E-selectin and to a lesser extent, intercellular adhesion molecule-1) and secretable cytokines (IL-6 and IL-8). Inhibition of endogenous NO production by L-N-monomethyl-arginine also induced the expression of VCAM-1, but did not augment cytokine-induced VCAM-1 expression. Nuclear run-on assays, transfection studies using various VCAM-1 promoter reporter gene constructs, and electrophoretic mobility shift assays indicated that NO represses VCAM-1 gene transcription, in part, by inhibiting NF-kappa B. We propose that NO's ability to limit endothelial activation and inhibit monocyte adhesion may contribute to some of its antiatherogenic and antiinflammatory properties within the vessel wall.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            K+ is an endothelium-derived hyperpolarizing factor in rat arteries.

            In arteries, muscarinic agonists such as acetylcholine release an unidentified, endothelium-derived hyperpolarizing factor (EDHF) which is neither prostacyclin nor nitric oxide. Here we show that EDHF-induced hyperpolarization of smooth muscle and relaxation of small resistance arteries are inhibited by ouabain plus Ba2+; ouabain is a blocker of Na+/K+ ATPase and Ba2+ blocks inwardly rectifying K+ channels. Small increases in the amount of extracellular K+ mimic these effects of EDHF in a ouabain- and Ba2+-sensitive, but endothelium-independent, manner. Acetylcholine hyperpolarizes endothelial cells and increases the K+ concentration in the myoendothelial space; these effects are abolished by charbdotoxin plus apamin. Hyperpolarization of smooth muscle by EDHF is also abolished by this toxin combination, but these toxins do not affect the hyperpolarizaiton of smooth muscle by added K+. These data show that EDHF is K+ that effluxes through charybdotoxin- and apamin-sensitive K+ channels on endothelial cells. The resulting increase in myoendothelial K+ concentration hyperpolarizes and relaxes adjacent smooth-muscle cells by activating Ba2+-sensitive K+ channels and Na+/K+ ATPase. These results show that fluctuations in K+ levels originating within the blood vessel itself are important in regulating mammalian blood pressure and flow.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation.

              Endothelium-dependent relaxations are achieved by a combination of endothelium-derived prostacyclin (PGI2), nitric oxide (NO), and endothelium-derived hyperpolarizing factor (EDHF). However, it remains to be fully clarified whether the relative contribution of these three mechanisms to endothelium-dependent relaxations varies as a function of the vessel size. This study was designed to clarify this point. Acetylcholine (ACh)-induced endothelium-dependent relaxations were examined in isolated blood vessels taken from the aorta and the proximal and distal mesenteric arteries of the rat. The contributions of PGI2, NO, and EDHF were evaluated by the inhibitory effects of indomethacin, N omega-nitro-L-arginine methyl ester (L-NAME) in the presence of indomethacin, and KCl in the presence of indomethacin and L-NAME, respectively. The membrane potentials were recorded with microelectrodes. The expression of endothelial No synthase (eNOS) was examined by both immunostaining and immunoblotting. The contribution of PGI2 was negligible in three different-sized blood vessels. The contribution of NO was most prominent in the aorta, whereas that of EDHF was most prominent in the distal mesenteric arteries. The resting membrane potential was significantly deeper and the ACh-induced hyperpolarization was greater in the distal mesenteric arteries than those in the aorta. The expression of eNOS was the highest in the aorta and the lowest in the distal mesenteric arteries. These results indicate that the importance of EDHF increases as the vessel size decreases in endothelium-dependent relaxations in the rat mesenteric circulation.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2007
                June 2007
                16 April 2007
                : 44
                : 4
                : 325-335
                Affiliations
                Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
                Article
                101778 J Vasc Res 2007;44:325–335
                10.1159/000101778
                17438361
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 8, Tables: 2, References: 65, Pages: 11
                Categories
                Research Paper

                Comments

                Comment on this article