6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Congenital dyserythropoietic anemias

      1 , 2 , 1 , 2 , 1 , 2
      Blood
      American Society of Hematology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Congenital dyserythropoietic anemias (CDAs) are a heterogeneous group of inherited anemias that affect the normal differentiation–proliferation pathways of the erythroid lineage. They belong to the wide group of ineffective erythropoiesis conditions that mainly result in monolinear cytopenia. CDAs are classified into the 3 major types (I, II, III), plus the transcription factor-related CDAs, and the CDA variants, on the basis of the distinctive morphological, clinical, and genetic features. Next-generation sequencing has revolutionized the field of diagnosis of and research into CDAs, with reduced time to diagnosis, and ameliorated differential diagnosis in terms of identification of new causative/modifier genes and polygenic conditions. The main improvements regarding CDAs have been in the study of iron metabolism in CDAII. The erythroblast-derived hormone erythroferrone specifically inhibits hepcidin production, and its role in the mediation of hepatic iron overload has been dissected out. We discuss here the most recent advances in this field regarding the molecular genetics and pathogenic mechanisms of CDAs, through an analysis of the clinical and molecular classifications, and the complications and clinical management of patients. We summarize also the main cellular and animal models developed to date and the possible future therapies.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Large-scale mapping of human protein–protein interactions by mass spectrometry

          Mapping protein–protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein–protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24 540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein–protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IDENTIFICATION OF ERYTHROFERRONE AS AN ERYTHROID REGULATOR OF IRON METABOLISM

            Recovery from blood loss requires a greatly enhanced supply of iron to support expanded erythropoiesis. After hemorrhage, suppression of the iron-regulatory hormone hepcidin allows increased iron absorption and mobilization from stores. We identified a new hormone, erythroferrone (ERFE), which mediates hepcidin suppression during stress erythropoiesis. ERFE is produced by erythroblasts in response to erythropoietin. ERFE-deficient mice fail to suppress hepcidin rapidly after hemorrhage and exhibit a delay in recovery from blood loss. ERFE expression is greatly increased in murine HbbTh3/+ thalassemia intermedia where it contributes to the suppression of hepcidin and systemic iron overload characteristic of this disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome).

              Majeed syndrome is an autosomal recessive, autoinflammatory disorder characterised by chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia. The objectives of this study were to map, identify, and characterise the Majeed syndrome causal gene and to speculate on its function and role in skin and bone inflammation. Six individuals with Majeed syndrome from two unrelated families were identified for this study. Homozygosity mapping and parametric linkage analysis were employed for the localisation of the gene responsible for Majeed syndrome. Direct sequencing was utilised for the identification of mutations within the genes contained in the region of linkage. Expression studies and in silico characterisation of the identified causal gene and its protein were carried out. The phenotype of Majeed syndrome includes inflammation of the bone and skin, recurrent fevers, and dyserythropoietic anaemia. The clinical picture of the six affected individuals is briefly reviewed. The gene was mapped to a 5.5 cM interval (1.8 Mb) on chromosome 18p. Examination of genes in this interval led to the identification of homozygous mutations in LPIN2 in affected individuals from the two families. LPIN2 was found to be expressed in almost all tissues. The function of LPIN2 and its role in inflammation remains unknown. We conclude that homozygous mutations in LPIN2 result in Majeed syndrome. Understanding the aberrant immune response in this condition will shed light on the aetiology of other inflammatory disorders of multifactorial aetiology including isolated chronic recurrent multifocal osteomyelitis, Sweet syndrome, and psoriasis.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Blood
                American Society of Hematology
                0006-4971
                1528-0020
                September 10 2020
                September 10 2020
                : 136
                : 11
                : 1274-1283
                Affiliations
                [1 ]Department of Molecular Medicine and Medical Biotechnologies, “Federico II” University of Naples, Naples, Italy; and
                [2 ]CEINGE–Biotecnologie Avanzate, Naples, Italy
                Article
                10.1182/blood.2019000948
                32702750
                98725ca9-930a-4766-8119-2aab23637cef
                © 2020
                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article