5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Moving beyond the distinction between concrete and abstract concepts

      , ,
      Philosophical Transactions of the Royal Society B: Biological Sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d6457970e143">From the perspective of the situated conceptualization framework, the primary purpose of concepts is for categorizing and integrating elements of situations to support goal-directed action (including communication and social interaction). To the extent that important situational elements are categorized and integrated properly, effective goal-directed action follows. Over time, frequent patterns of co-occurring concepts within situations become established in memory as situated conceptualizations, conditioning the conceptual system and producing habitual patterns of conceptual processing. As a consequence, individual concepts are most basically represented within patterns of concepts that become entrained with specific kinds of physical situations. In this framework, the concrete versus abstract distinction between concepts is no longer useful, with two other distinctions becoming important instead: (i) external versus internal situational elements, (ii) situational elements versus situational integrations. Whereas concepts for situational elements originate in distributed neural networks that provide continual feeds about components of situations, concepts for situational integrations originate in association areas that establish temporal co-occurrence relations between situational elements, both external and internal. We propose that studying concepts in the context of situated action is necessary for establishing complete accounts of them, and that continuing to study concepts in isolation is likely to provide relatively incomplete and distorted accounts. </p><p id="d6457970e145">This article is part of the theme issue ‘Varieties of abstract concepts: development, use and representation in the brain’. </p>

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The brain basis of emotion: a meta-analytic review.

          Researchers have wondered how the brain creates emotions since the early days of psychological science. With a surge of studies in affective neuroscience in recent decades, scientists are poised to answer this question. In this target article, we present a meta-analytic summary of the neuroimaging literature on human emotion. We compare the locationist approach (i.e., the hypothesis that discrete emotion categories consistently and specifically correspond to distinct brain regions) with the psychological constructionist approach (i.e., the hypothesis that discrete emotion categories are constructed of more general brain networks not specific to those categories) to better understand the brain basis of emotion. We review both locationist and psychological constructionist hypotheses of brain-emotion correspondence and report meta-analytic findings bearing on these hypotheses. Overall, we found little evidence that discrete emotion categories can be consistently and specifically localized to distinct brain regions. Instead, we found evidence that is consistent with a psychological constructionist approach to the mind: A set of interacting brain regions commonly involved in basic psychological operations of both an emotional and non-emotional nature are active during emotion experience and perception across a range of discrete emotion categories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Perceptual symbol systems.

            Prior to the twentieth century, theories of knowledge were inherently perceptual. Since then, developments in logic, statistics, and programming languages have inspired amodal theories that rest on principles fundamentally different from those underlying perception. In addition, perceptual approaches have become widely viewed as untenable because they are assumed to implement recording systems, not conceptual systems. A perceptual theory of knowledge is developed here in the context of current cognitive science and neuroscience. During perceptual experience, association areas in the brain capture bottom-up patterns of activation in sensory-motor areas. Later, in a top-down manner, association areas partially reactivate sensory-motor areas to implement perceptual symbols. The storage and reactivation of perceptual symbols operates at the level of perceptual components--not at the level of holistic perceptual experiences. Through the use of selective attention, schematic representations of perceptual components are extracted from experience and stored in memory (e.g., individual memories of green, purr, hot). As memories of the same component become organized around a common frame, they implement a simulator that produces limitless simulations of the component (e.g., simulations of purr). Not only do such simulators develop for aspects of sensory experience, they also develop for aspects of proprioception (e.g., lift, run) and introspection (e.g., compare, memory, happy, hungry). Once established, these simulators implement a basic conceptual system that represents types, supports categorization, and produces categorical inferences. These simulators further support productivity, propositions, and abstract concepts, thereby implementing a fully functional conceptual system. Productivity results from integrating simulators combinatorially and recursively to produce complex simulations. Propositions result from binding simulators to perceived individuals to represent type-token relations. Abstract concepts are grounded in complex simulations of combined physical and introspective events. Thus, a perceptual theory of knowledge can implement a fully functional conceptual system while avoiding problems associated with amodal symbol systems. Implications for cognition, neuroscience, evolution, development, and artificial intelligence are explored.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies.

              We performed an updated quantitative meta-analysis of 162 neuroimaging studies of emotion using a novel multi-level kernel-based approach, focusing on locating brain regions consistently activated in emotional tasks and their functional organization into distributed functional groups, independent of semantically defined emotion category labels (e.g., "anger," "fear"). Such brain-based analyses are critical if our ways of labeling emotions are to be evaluated and revised based on consistency with brain data. Consistent activations were limited to specific cortical sub-regions, including multiple functional areas within medial, orbital, and inferior lateral frontal cortices. Consistent with a wealth of animal literature, multiple subcortical activations were identified, including amygdala, ventral striatum, thalamus, hypothalamus, and periaqueductal gray. We used multivariate parcellation and clustering techniques to identify groups of co-activated brain regions across studies. These analyses identified six distributed functional groups, including medial and lateral frontal groups, two posterior cortical groups, and paralimbic and core limbic/brainstem groups. These functional groups provide information on potential organization of brain regions into large-scale networks. Specific follow-up analyses focused on amygdala, periaqueductal gray (PAG), and hypothalamic (Hy) activations, and identified frontal cortical areas co-activated with these core limbic structures. While multiple areas of frontal cortex co-activated with amygdala sub-regions, a specific region of dorsomedial prefrontal cortex (dmPFC, Brodmann's Area 9/32) was the only area co-activated with both PAG and Hy. Subsequent mediation analyses were consistent with a pathway from dmPFC through PAG to Hy. These results suggest that medial frontal areas are more closely associated with core limbic activation than their lateral counterparts, and that dmPFC may play a particularly important role in the cognitive generation of emotional states.
                Bookmark

                Author and article information

                Journal
                Philosophical Transactions of the Royal Society B: Biological Sciences
                Phil. Trans. R. Soc. B
                The Royal Society
                0962-8436
                1471-2970
                June 18 2018
                August 05 2018
                June 18 2018
                August 05 2018
                : 373
                : 1752
                : 20170144
                Article
                10.1098/rstb.2017.0144
                6015837
                29915012
                987e15e9-8c22-4d19-836f-41653c0d78c7
                © 2018
                History

                Comments

                Comment on this article