54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A comparative analysis of Y chromosome and mtDNA phylogenies of the Hylobates gibbons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The evolutionary relationships of closely related species have long been of interest to biologists since these species experienced different evolutionary processes in a relatively short period of time. Comparison of phylogenies inferred from DNA sequences with differing inheritance patterns, such as mitochondrial, autosomal, and X and Y chromosomal loci, can provide more comprehensive inferences of the evolutionary histories of species. Gibbons, especially the genus Hylobates, are particularly intriguing as they consist of multiple closely related species which emerged rapidly and live in close geographic proximity. Our current understanding of relationships among Hylobates species is largely based on data from the maternally-inherited mitochondrial DNAs (mtDNAs).

          Results

          To infer the paternal histories of gibbon taxa, we sequenced multiple Y chromosomal loci from 26 gibbons representing 10 species. As expected, we find levels of sequence variation some five times lower than observed for the mitochondrial genome (mtgenome). Although our Y chromosome phylogenetic tree shows relatively low resolution compared to the mtgenome tree, our results are consistent with the monophyly of gibbon genera suggested by the mtgenome tree. In a comparison of the molecular dating of divergences and on the branching patterns of phylogeny trees between mtgenome and Y chromosome data, we found: 1) the inferred divergence estimates were more recent for the Y chromosome than for the mtgenome, 2) the species H. lar and H. pileatus are monophyletic in the mtgenome phylogeny, respectively, but a H. pileatus individual falls into the H. lar Y chromosome clade.

          Conclusions

          Based on the ~6.4 kb of Y chromosomal DNA sequence data generated for each of the 26 individuals in this study, we provide molecular inferences on gibbon and particularly on Hylobates evolution complementary to those from mtDNA data. Overall, our results illustrate the utility of comparative studies of loci with different inheritance patterns for investigating potential sex specific processes on the evolutionary histories of closely related taxa, and emphasize the need for further sampling of gibbons of known provenance.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: not found
          • Article: not found

          Gene Trees in Species Trees

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advances in our understanding of mammalian sex-biased dispersal.

            Sex-biased dispersal is an almost ubiquitous feature of mammalian life history, but the evolutionary causes behind these patterns still require much clarification. A quarter of a century since the publication of seminal papers describing general patterns of sex-biased dispersal in both mammals and birds, we review the advances in our theoretical understanding of the evolutionary causes of sex-biased dispersal, and those in statistical genetics that enable us to test hypotheses and measure dispersal in natural populations. We use mammalian examples to illustrate patterns and proximate causes of sex-biased dispersal, because by far the most data are available and because they exhibit an enormous diversity in terms of dispersal strategy, mating and social systems. Recent studies using molecular markers have helped to confirm that sex-biased dispersal is widespread among mammals and varies widely in direction and intensity, but there is a great need to bridge the gap between genetic information, observational data and theory. A review of mammalian data indicates that the relationship between direction of sex-bias and mating system is not a simple one. The role of social systems emerges as a key factor in determining intensity and direction of dispersal bias, but there is still need for a theoretical framework that can account for the complex interactions between inbreeding avoidance, kin competition and cooperation to explain the impressive diversity of patterns.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid evolution of animal mitochondrial DNA.

              Mitochondrial DNA was purified from four species of higher primates (Guinea baboon, rhesus macaque, guenon, and human) and digested with 11 restriction endonucleases. A cleavage map was constructed for the mitochondrial DNA of each species. Comparison of the maps, aligned with respect to the origin and direction of DNA replication, revealed that the species differ from one another at most of the cleavage sites. The degree of divergence in nucleotide sequence at these sites was calculated from the fraction of cleavage sites shared by each pair of species. By plotting the degree of divergence in mitochondrial DNA against time of divergence, the rate of base substitution could be calculated from the initial slope of the curve. The value obtained, 0.02 substitutions per base pair per million years, was compared with the value for single-copy nuclear DNA. The rate of evolution of the mitochondrial genome appears to exceed that of the single-copy fraction of the nuclear genome by a factor of about 10. This high rate may be due, in part, to an elevated rate of mutation in mitochondrial DNA. Because of the high rate of evolution, mitochondrial DNA is likely to be an extremely useful molecule to employ for high-resolution analysis of the evolutionary process.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evol. Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2012
                21 August 2012
                : 12
                : 150
                Affiliations
                [1 ]Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
                [2 ]Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Kellnerweg 4, Göttingen, 37077, Germany
                [3 ]Wildlife Research Center, Kyoto University, 2–24 Tanaka-Sekiden-cho Sakyo-ku, Kyoto, 606-820, Japan
                [4 ]Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
                [5 ]Animal Division, Taipei Zoo, No.30 Sec.2 Xinguang Rd, Taipei City, 11656, Taiwan
                Article
                1471-2148-12-150
                10.1186/1471-2148-12-150
                3444420
                22909292
                987f4363-24ad-48cb-8a66-1ea08790c7e7
                Copyright ©2012 Chan et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 May 2012
                : 15 August 2012
                Categories
                Research Article

                Evolutionary Biology
                divergence times,y chromosome phylogeny,mitochondrial genome,phylogenetic relationships,gene flow

                Comments

                Comment on this article