2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Massive droplet generation for digital PCR via a smart step emulsification chip integrated in a reaction tube

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A compact device integrating a smart chip with a reaction tube is used to prepare monodisperse droplets for ddPCR.

          Abstract

          Step emulsification (SE) devices coupled with parallel generation nozzles are widely used in the production of large-scale monodisperse droplets, especially for droplet-based digital polymerase chain reaction (ddPCR) analysis. Although current ddPCR systems based on the SE method can provide a fully enclosed ddPCR scheme, high demands on chip fabrication and system control will increase testing costs and reduce its flexibility in ddPCR analysis. In this study, a compact SE device, integrating a smart SE chip into a reaction tube, was developed to prepare large-scale water-in-fluorinated-oil droplets for ddPCR analysis. The SE chip contained dozens of droplet-generation nozzles. By adjusting the nozzle height of the SE chip, monodisperse droplets in a picolitre to nanolitre vloume could be prepared at a production rate of tens to hundreds of microlitres per minute. Subsequently, we utilized such an integrated SE device to prepare monodisperse droplets for ddPCR experiments. The volume of PCR reagent and the number of droplets could be flexibly adjusted according to the requirements of the ddPCR analysis. The quantitative results showed that emulsions prepared by the SE device could achieve ddPCR detection with high accuracy, good repeatability, and an adaptive dynamic range, which also demonstrated the robustness and reliability of such devices in the droplet preparation. Thus, this compact SE device provides an inexpensive, flexible, and simplified droplet preparation method for digital PCR quantitative analysis.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Droplet microfluidics.

          Droplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of "digital fluidic" operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications. In addition to being used as microreactors ranging from the nano- to femtoliter range; droplet-based systems have also been used to directly synthesize particles and encapsulate many biological entities for biomedicine and biotechnology applications. This review will focus on the various droplet operations, as well as the numerous applications of the system. Due to advantages unique to droplet-based systems, this technology has the potential to provide novel solutions to today's biomedical engineering challenges for advanced diagnostics and therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number

            Digital PCR enables the absolute quantitation of nucleic acids in a sample. The lack of scalable and practical technologies for digital PCR implementation has hampered the widespread adoption of this inherently powerful technique. Here we describe a high-throughput droplet digital PCR (ddPCR) system that enables processing of ∼2 million PCR reactions using conventional TaqMan assays with a 96-well plate workflow. Three applications demonstrate that the massive partitioning afforded by our ddPCR system provides orders of magnitude more precision and sensitivity than real-time PCR. First, we show the accurate measurement of germline copy number variation. Second, for rare alleles, we show sensitive detection of mutant DNA in a 100 000-fold excess of wildtype background. Third, we demonstrate absolute quantitation of circulating fetal and maternal DNA from cell-free plasma. We anticipate this ddPCR system will allow researchers to explore complex genetic landscapes, discover and validate new disease associations, and define a new era of molecular diagnostics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emerging Droplet Microfluidics.

              Droplet microfluidics generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels. Due to its remarkable advantages, droplet microfluidics bears significant value in an extremely wide range of area. In this review, we provide a comprehensive and in-depth insight into droplet microfluidics, covering fundamental research from microfluidic chip fabrication and droplet generation to the applications of droplets in bio(chemical) analysis and materials generation. The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development. We believe this review will promote communications among biology, chemistry, physics, and materials science.
                Bookmark

                Author and article information

                Contributors
                Journal
                ANALAO
                The Analyst
                Analyst
                Royal Society of Chemistry (RSC)
                0003-2654
                1364-5528
                March 8 2021
                2021
                : 146
                : 5
                : 1559-1568
                Affiliations
                [1 ]State Key Laboratory for Manufacturing Systems Engineering
                [2 ]Xi'an Jiaotong University
                [3 ]Xi'an
                [4 ]China
                Article
                10.1039/D0AN01841D
                990bd241-5f38-4e14-b36d-9824fe2c1158
                © 2021

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article