9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Time-dependent changes in kinetics of Na+ current in single canine cardiac Purkinje cells.

      The American journal of physiology
      Animals, Biological Availability, Cell Membrane, physiology, Cell Separation, Dogs, Electric Conductivity, Electrophysiology, Kinetics, Models, Cardiovascular, Purkinje Fibers, cytology, Sodium, Sodium Channels, metabolism, Time Factors

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The spontaneous hyperpolarizing shift in Na+ channel kinetics that occurs during a series of voltage-clamp recordings was characterized in single canine cardiac Purkinje cells at 10-13.5 degrees C. The change in the half-point of voltage-dependent availability, in the half-point of peak conductance, in the voltage dependence of deactivation and time to peak Na+ channel current (INa), and in the time constants of INa decay in response to step depolarizations were examined. The half points of availability and conductance shifted similarly, -0.41 +/- 0.13 and -0.47 +/- 0.19 mV/min, respectively (n = 14). These were directly correlated (slope 1.14 +/- 0.06, R2 = 0.81) with conductance shifting on average only -0.05 mV/min faster than availability. The deactivation time constant-voltage relationship shifted similarly to availability and conductance. Tail current decay time constants predicted the voltage dependence of the open to closed transition to be 0.9e-. Time to peak INa in response to step depolarizations changed e-fold for 25 mV but plateaued at positive potentials (531 microseconds, n = 22). INa decay was multiexponential between -40 and 80 mV. Decay time constants changed little as a function of voltage at positive potentials. The contribution of the second time constant to decay amplitude was 15-20% over the entire voltage range. Time to peak INa shifted in a curvilinear fashion, changing less late in an experiment. We conclude that the channel-voltage sensor responds to a changing fraction of the applied voltage during an experiment, producing similar rates of shift of voltage-dependent availability, conductance, and deactivation time constants.

          Related collections

          Author and article information

          Comments

          Comment on this article