4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cloning and Characterization of a Specific Receptor for the Novel CC Chemokine MIP-3α from Lung Dendritic Cells

      research-article

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dendritic cells are potent antigen-presenting cells involved in the initiation of immune responses. The trafficking of these cells to tissues and lymph nodes is mediated by members of the chemokine family. Recently, a novel CC chemokine known as MIP-3α or liver and activation-regulated chemokine has been identified from the EMBL/GenBank/DDBJ expressed sequence tag database. In the present study, we have shown that the messenger RNA for MIP-3α is expressed predominantly in inflamed and mucosal tissues. MIP-3α produced either synthetically or by human embryonic kidney 293 cells is chemotactic for CD34 +-derived dendritic cells and T cells, but is inactive on monocytes and neutrophils. MIP-3α was unable to displace the binding of specific CC or CXC chemokines to stable cell lines expressing their respective high affinity receptors, namely CCR1–5 and CXCR1 and CXCR2, suggesting that MIP-3α acts through a novel CC chemokine receptor. Therefore, we used degenerate oligonucleotide-based reverse transcriptase PCR to identify candidate MIP-3α receptors in lung dendritic cells. Our results show that the orphan receptor known as GCY-4, CKRL-3, or STRL-22 is a specific receptor for MIP-3α, and that its activation leads to pertussis toxin–sensitive and phospholipase C–dependent intracellular Ca 2+ mobilization when it is expressed in HEK 293 cells.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes

          A human receptor that is selective for the CXC chemokines IP10 and Mig was cloned and characterized. The receptor cDNA has an open reading frame of 1104-bp encoding a protein of 368 amino acids with a molecular mass of 40,659 dalton. The sequence includes seven putative transmembrane segments characteristic of G-protein coupled receptors. It shares 40.9 and 40.3% identical amino acids with the two IL-8 receptors, and 34.2-36.9% identity with the five known CC chemokine receptors. The IP10/Mig receptor is highly expressed in IL-2-activated T lymphocytes, but is not detectable in resting T lymphocytes. B lymphocytes, monocytes and granulocytes. It mediates Ca2+ mobilization and chemotaxis in response to IP10 and Mig, but does not recognize the CXC-chemokines IL-8, GRO alpha, NAP-2, GCP-2. ENA78, PF4, the CC- chemokines MCP-1, MCP-2, MCP-3, MCP-4, MIP-1 alpha, MIP-1 beta. RANTES, 1309, eotaxin, nor lymphotactin. The exclusive expression in activated T-lymphocytes is of high interest since the receptors for chemokines which have been shown so far to attract lymphocytes, e.g., MCP-1, MCP- 2, MCP-3, MIP-1 alpha, MIP-1 beta, and RANTES, are also found in monocytes and granulocytes. The present observations suggest that the IP10/Mig receptor is involved in the selective recruitment of effector T cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails.

            Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine family of cytokines that mediate leukocyte chemotaxis. The potent and specific activation of monocytes by MCP-1 may mediate the monocytic infiltration of tissues in atherosclerosis and other inflammatory diseases. We have isolated cDNAs that encode two MCP-1-specific receptors with alternatively spliced carboxyl tails. Expression of the receptors in Xenopus oocytes conferred robust mobilization of intracellular calcium in response to nanomolar concentrations of MCP-1 but not to related chemokines. The MCP-1 receptors are most closely related to the receptor for the chemokines macrophage inflammatory protein 1 alpha and RANTES (regulated on activation, normal T expressed and secreted). The identification of the MCP-1 receptor and cloning of two distinct isoforms provide powerful tools for understanding the specificity and signaling mechanisms of this important chemokine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cloning of complementary DNA encoding a functional human interleukin-8 receptor.

              Interleukin-8 (IL-8) is an inflammatory cytokine that activates neutrophil chemotaxis, degranulation, and the respiratory burst. Neutrophils express receptors for IL-8 that are coupled to guanine nucleotide-binding proteins (G proteins); binding of IL-8 to its receptor induces the mobilization of intracellular calcium stores. A cDNA clone from HL-60 neutrophils, designated p2, has now been isolated that encodes a human IL-8 receptor. When p2 is expressed in oocytes from Xenopus laevis, the oocytes bind 125I-labeled IL-8 specifically and respond to IL-8 by mobilizing calcium stores with an EC50 of 20 nM. This IL-8 receptor has 77% amino acid identity with a second human neutrophil receptor isotype that binds IL-8 with higher affinity. It also exhibits 69% amino acid identity with a protein reported to be an N-formyl peptide receptor from rabbit neutrophils, but less than 30% identity with all other known G protein-coupled receptors, including the human N-formyl peptide receptor.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                15 September 1997
                : 186
                : 6
                : 825-835
                Affiliations
                From the [* ]Geneva Biomedical Research Institute, GlaxoWellcome Research and Development, Geneva, Switzerland; []University of British Columbia, Vancouver, Canada; and [§ ]Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
                Author notes

                Address correspondence to Dr. C.A. Power, Geneva Biomedical Research Institute, GlaxoWellcome Research and Development S.A., 14, chemin des Aulx, 1228, Plan-les-Ouates, Geneva, Switzerland. Phone: 00-41-22-7069-752; FAX: 00-41-22-7946-965; E-mail: CAP15123@ 123456ggr.co.uk

                Article
                2199050
                9294137
                999bc052-4fc3-4535-9f8f-93bb18dcd1fc
                Copyright @ 1997
                History
                : 5 June 1997
                : 3 July 1997
                Categories
                Article
                Articles

                Medicine
                Medicine

                Comments

                Comment on this article