0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Signal Enhancement in Distributed Acoustic Sensing Data Using a Guided Unsupervised Deep Learning Network

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Distributed Acoustic Sensing (DAS) is a promising technology introducing a new paradigm in the acquisition of high-resolution seismic data. However, DAS data often show weak signals compared to the background noise, especially in tough installation environments. In this study, we propose a new approach to denoise DAS data that leverages an unsupervised deep learning (DL) model, eliminating the need for labeled training data. The DL model aims to reconstruct the DAS signal while simultaneously attenuating DAS noise. The input DAS data undergo band-pass filtering to eliminate high-frequency content. Subsequently, a continuous wavelet transform (CWT) is performed, and the finest scale is used to guide the DL model in reconstructing the DAS signal. First, we extract 2D patches from both the band-pass filtered data and the CWT scale of the data. Then, these patches are converted using an unrolling mechanism into 1D vectors to form the input of the DL model. The architecture of the proposed DL network is composed of several fully-connected layers. A self-attention layer is further included in each layer to extract the spatial relation between the band-pass filtered data and the CWT scale. Through an iterative process, the DL model tunes its parameters to suppress DAS noise, with the band-pass filtered data serving as the target for the network. We employ the log cosh as a loss function for the DL model, enhancing its robustness against erratic noise. The denoising performance of the proposed framework is validated using field examples from the San Andreas Fault Observatory at Depth (SAFOD) and Frontier Observatory for Research in Geothermal Energy (FORGE) datasets, where the data are recorded by a fiber-optic cable. Comparative analyses against three benchmark methods reveal the robust denoising performance of the proposed framework.

          Related collections

          Author and article information

          Journal
          13 May 2024
          Article
          2405.07660
          999ef66c-4dbe-453e-ba75-68e37482575d

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          This paper has been submitted to Geophysics
          physics.geo-ph

          Geophysics
          Geophysics

          Comments

          Comment on this article