5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical performance of an antibody-free assay for plasma Aβ42/Aβ40 to detect early alterations of Alzheimer’s disease in individuals with subjective cognitive decline

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Accessible and cost-effective diagnostic tools are urgently needed to accurately quantify blood biomarkers to support early diagnosis of Alzheimer’s disease (AD). In this study, we investigated the ability of plasma amyloid-beta (Aβ)42/Aβ40 ratio measured by an antibody-free mass-spectrometric (MS) method, ABtest-MS, to detect early pathological changes of AD.

          Methods

          This cohort study included data from the baseline and 2-year follow-up visits from the Fundació ACE Healthy Brain Initiative (FACEHBI) study. Plasma Aβ42/Aβ40 was measured with ABtest-MS and compared to 18F-Florbetaben PET as the reference standard (cutoff for early amyloid deposition of 13.5 centiloids). Cross-validation was performed in an independent DPUK-Korean cohort. Additionally, associations of plasma Aβ42/Aβ40 with episodic memory performance and brain atrophy were assessed.

          Results

          The FACEHBI cohort at baseline included 200 healthy individuals with subjective cognitive decline (SCD), of which 36 (18%) were Aβ-PET positive. Plasma Aβ42/Aβ40 levels were significantly lower in Aβ-PET positive individuals (median [interquartile range, IQR], 0.215 [0.203–0.236]) versus Aβ-PET negative subjects (median [IQR], 0.261 [0.244–0.279]) ( P < .001). Plasma Aβ42/Aβ40 was significantly correlated with Aβ-PET levels (rho = −0.390; P < .001) and identified Aβ-PET status with an area under the receiver operating characteristic curve (AUC) of 0.87 (95% confidence interval [CI], 0.80–0.93). A cutoff for the Aβ42/Aβ40 ratio of 0.241 (maximum Youden index) yielded a sensitivity of 86.1% and a specificity of 80.5%. These findings were cross-validated in an independent DPUK-Korean cohort (AUC 0.86 [95% CI 0.77–0.95]). Lower plasma Aβ42/Aβ40 ratio was associated with worse episodic memory performance and increased brain atrophy. Plasma Aβ42/Aβ40 at baseline predicted clinical conversion to mild cognitive impairment and longitudinal changes in amyloid deposition and brain atrophy at 2-year follow-up.

          Conclusions

          This study suggests that plasma Aβ42/Aβ40, as determined by this MS-based assay, has potential value as an accurate and cost-effective tool to identify individuals in the earliest stages of AD, supporting its implementation in clinical trials, preventative strategies and clinical practice.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13195-022-01143-z.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          High performance plasma amyloid-β biomarkers for Alzheimer’s disease

          To facilitate clinical trials of disease-modifying therapies for Alzheimer's disease, which are expected to be most efficacious at the earliest and mildest stages of the disease, supportive biomarker information is necessary. The only validated methods for identifying amyloid-β deposition in the brain-the earliest pathological signature of Alzheimer's disease-are amyloid-β positron-emission tomography (PET) imaging or measurement of amyloid-β in cerebrospinal fluid. Therefore, a minimally invasive, cost-effective blood-based biomarker is desirable. Despite much effort, to our knowledge, no study has validated the clinical utility of blood-based amyloid-β markers. Here we demonstrate the measurement of high-performance plasma amyloid-β biomarkers by immunoprecipitation coupled with mass spectrometry. The ability of amyloid-β precursor protein (APP)669-711/amyloid-β (Aβ)1-42 and Aβ1-40/Aβ1-42 ratios, and their composites, to predict individual brain amyloid-β-positive or -negative status was determined by amyloid-β-PET imaging and tested using two independent data sets: a discovery data set (Japan, n = 121) and a validation data set (Australia, n = 252 including 111 individuals diagnosed using 11C-labelled Pittsburgh compound-B (PIB)-PET and 141 using other ligands). Both data sets included cognitively normal individuals, individuals with mild cognitive impairment and individuals with Alzheimer's disease. All test biomarkers showed high performance when predicting brain amyloid-β burden. In particular, the composite biomarker showed very high areas under the receiver operating characteristic curves (AUCs) in both data sets (discovery, 96.7%, n = 121 and validation, 94.1%, n = 111) with an accuracy approximately equal to 90% when using PIB-PET as a standard of truth. Furthermore, test biomarkers were correlated with amyloid-β-PET burden and levels of Aβ1-42 in cerebrospinal fluid. These results demonstrate the potential clinical utility of plasma biomarkers in predicting brain amyloid-β burden at an individual level. These plasma biomarkers also have cost-benefit and scalability advantages over current techniques, potentially enabling broader clinical access and efficient population screening.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts

            CSF and PET biomarkers of amyloid β and tau accurately detect Alzheimer's disease pathology, but the invasiveness, high cost, and poor availability of these detection methods restrict their widespread use as clinical diagnostic tools. CSF tau phosphorylated at threonine 181 (p-tau181) is a highly specific biomarker for Alzheimer's disease pathology. We aimed to assess whether blood p-tau181 could be used as a biomarker for Alzheimer's disease and for prediction of cognitive decline and hippocampal atrophy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia

              Plasma phosphorylated tau181 (P-tau181) might be increased in Alzheimer's disease (AD), but its usefulness for differential diagnosis and prognosis is unclear. We studied plasma P-tau181 in three cohorts, with a total of 589 individuals, including cognitively unimpaired participants and patients with mild cognitive impairment (MCI), AD dementia and non-AD neurodegenerative diseases. Plasma P-tau181 was increased in preclinical AD and further increased at the MCI and dementia stages. It correlated with CSF P-tau181 and predicted positive Tau positron emission tomography (PET) scans (area under the curve (AUC) = 0.87-0.91 for different brain regions). Plasma P-tau181 differentiated AD dementia from non-AD neurodegenerative diseases with an accuracy similar to that of Tau PET and CSF P-tau181 (AUC = 0.94-0.98), and detected AD neuropathology in an autopsy-confirmed cohort. High plasma P-tau181 was associated with subsequent development of AD dementia in cognitively unimpaired and MCI subjects. In conclusion, plasma P-tau181 is a noninvasive diagnostic and prognostic biomarker of AD, which may be useful in clinical practice and trials.
                Bookmark

                Author and article information

                Contributors
                mpascual@araclon.com
                Journal
                Alzheimers Res Ther
                Alzheimers Res Ther
                Alzheimer's Research & Therapy
                BioMed Central (London )
                1758-9193
                5 January 2023
                5 January 2023
                2023
                : 15
                : 2
                Affiliations
                [1 ]Araclon Biotech-Grifols, Zaragoza, Spain
                [2 ]GRID grid.410675.1, ISNI 0000 0001 2325 3084, Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, ; Barcelona, Spain
                [3 ]GRID grid.418264.d, ISNI 0000 0004 1762 4012, CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, ; Madrid, Spain
                [4 ]GRID grid.264381.a, ISNI 0000 0001 2181 989X, Department of Neurology, Samsung Medical Center, , Sungkyunkwan University School of Medicine, ; Seoul, South Korea
                Article
                1143
                10.1186/s13195-022-01143-z
                9814201
                36604729
                99ae8d0e-004c-4ee9-ac50-c0399bdcaedf
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 20 October 2022
                : 14 December 2022
                Categories
                Research
                Custom metadata
                © The Author(s) 2023

                Neurology
                alzheimer’s disease,amyloid,aβ42/aβ40,ratio,biomarkers,plasma,blood biomarkers,mass spectrometry,subjective cognitive decline

                Comments

                Comment on this article