1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Induced pluripotent stem cell-derived hepatocytes reveal TCA cycle disruption and the potential basis for triheptanoin treatment for malate dehydrogenase 2 deficiency

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondrial malate dehydrogenase 2 (MDH2) is crucial to cellular energy generation through direct participation in the tricarboxylic acid (TCA) cycle and the malate aspartate shuttle (MAS). Inherited MDH2 deficiency is an ultra-rare metabolic disease caused by bi-allelic pathogenic variants in the MDH2 gene, resulting in early-onset encephalopathy, psychomotor delay, muscular hypotonia and frequent seizures. Currently, there is no cure for this devastating disease. We recently reported symptomatic improvement of a three-year-old girl with MDH2 deficiency following treatment with the triglyceride triheptanoin. Here, we aimed to better characterize this disease and improve our understanding of the potential utility of triheptanoin treatment. Using fibroblasts derived from this patient, we generated induced pluripotent stem cells (hiPSCs) and differentiated them into hepatocytes (hiPSC-Heps). Characterization of patient-derived hiPSCs and hiPSC-Heps revealed significantly reduced MDH2 protein expression. Untargeted proteotyping of hiPSC-Heps revealed global dysregulation of mitochondrial proteins, including upregulation of TCA cycle and fatty acid oxidation enzymes. Metabolomic profiling confirmed TCA cycle and MAS dysregulation, and demonstrated normalization of malate, fumarate and aspartate following treatment with the triheptanoin components glycerol and heptanoate. Taken together, our results provide the first patient-derived hiPSC-Hep-based model of MDH2 deficiency, confirm altered TCA cycle function, and provide further evidence for the implementation of triheptanoin therapy for this ultra-rare disease.

          Synopsis

          This study reveals altered expression of mitochondrial pathways including the tricarboxylic acid cycle and changes in metabolite profiles in malate dehydrogenase 2 deficiency and provides the molecular basis for triheptanoin treatment in this ultra-rare disease.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENT

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.

            Efficient analysis of very large amounts of raw data for peptide identification and protein quantification is a principal challenge in mass spectrometry (MS)-based proteomics. Here we describe MaxQuant, an integrated suite of algorithms specifically developed for high-resolution, quantitative MS data. Using correlation analysis and graph theory, MaxQuant detects peaks, isotope clusters and stable amino acid isotope-labeled (SILAC) peptide pairs as three-dimensional objects in m/z, elution time and signal intensity space. By integrating multiple mass measurements and correcting for linear and nonlinear mass offsets, we achieve mass accuracy in the p.p.b. range, a sixfold increase over standard techniques. We increase the proportion of identified fragmentation spectra to 73% for SILAC peptide pairs via unambiguous assignment of isotope and missed-cleavage state and individual mass precision. MaxQuant automatically quantifies several hundred thousand peptides per SILAC-proteome experiment and allows statistically robust identification and quantification of >4,000 proteins in mammalian cell lysates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              UniProt: a worldwide hub of protein knowledge

              (2018)
              Abstract The UniProt Knowledgebase is a collection of sequences and annotations for over 120 million proteins across all branches of life. Detailed annotations extracted from the literature by expert curators have been collected for over half a million of these proteins. These annotations are supplemented by annotations provided by rule based automated systems, and those imported from other resources. In this article we describe significant updates that we have made over the last 2 years to the resource. We have greatly expanded the number of Reference Proteomes that we provide and in particular we have focussed on improving the number of viral Reference Proteomes. The UniProt website has been augmented with new data visualizations for the subcellular localization of proteins as well as their structure and interactions. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Genet Metab Rep
                Mol Genet Metab Rep
                Molecular Genetics and Metabolism Reports
                Elsevier
                2214-4269
                23 February 2024
                June 2024
                23 February 2024
                : 39
                : 101066
                Affiliations
                [a ]University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland
                [b ]Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
                [c ]Pharmacy, Medical Faculty, University of Bern, Bern, Switzerland
                [d ]Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
                [e ]Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
                [f ]Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
                Author notes
                [* ]Corresponding author at: Department of Pediatrics, Julie-von-Jenner-Haus, Freiburgstrasse 15, Bern 3010, Switzerland. alexander.laemmle@ 123456insel.ch
                Article
                S2214-4269(24)00019-3 101066
                10.1016/j.ymgmr.2024.101066
                10900122
                38425868
                99ba22ed-d17b-44f0-a5b0-115499038a34
                © 2024 The Authors. Published by Elsevier Inc.

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 January 2024
                : 16 February 2024
                : 19 February 2024
                Categories
                Research Paper

                malate aspartate shuttle,malate dehydrogenase 2 deficiency,human induced pluripotent stem cell technology,hipsc-derived hepatocytes,proteomics,metabolic profiling,triheptanoin

                Comments

                Comment on this article