1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fabrication of Electrochemical Biosensor Based on Titanium Dioxide Nanotubes and Silver Nanoparticles for Heat Shock Protein 70 Detection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper presents the fabrication methodology of an electrochemical biosensor for the detection of heat shock protein 70 (HSP70) as a potential tumor marker with high diagnostic sensitivity. The sensor substrate was a composite based on titanium dioxide nanotubes (TNTs) and silver nanoparticles (AgNPs) produced directly on TNTs by electrodeposition, to which anti-HSP70 antibodies were attached by covalent functionalization. This manuscript contains a detailed description of the production, modification, and the complete characteristics of the material used as a biosensor platform. As-formed TNTs, annealed TNTs, and the final sensor platform—AgNPs/TNTs, were tested using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction analysis (XRD). In addition, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) of these substrates were used to assess the influence of TNTs modification on their electrochemical characteristics. The EIS technique was used to monitor the functionalization steps of the AgNPs/TNTs electrode and the interaction between anti-HSP70 and HSP70. The produced composite was characterized by high purity, and electrical conductivity improved more than twice compared to unmodified TNTs. The linear detection range of HSP70 of the developed biosensor was in the concentration range from 0.1 to 100 ng/mL.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Helical microtubules of graphitic carbon

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Methods for the determination of limit of detection and limit of quantitation of the analytical methods

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Materials (Basel)
                Materials (Basel)
                materials
                Materials
                MDPI
                1996-1944
                05 July 2021
                July 2021
                : 14
                : 13
                : 3767
                Affiliations
                [1 ]Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Z. Szafrana 4, 65-516 Zielona Gora, Poland; k.arkusz@ 123456ibem.uz.zgora.pl
                [2 ]Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warszawa, Poland; dpijanowska@ 123456ibib.waw.pl
                Author notes
                [* ]Correspondence: m.nycz@ 123456ibem.uz.zgora.pl ; Tel.: +48-789-441-696
                Author information
                https://orcid.org/0000-0001-7383-141X
                https://orcid.org/0000-0002-7815-4988
                Article
                materials-14-03767
                10.3390/ma14133767
                8269842
                9a2e1dc2-9e9f-4121-ac3f-5615b7a68da9
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 02 June 2021
                : 03 July 2021
                Categories
                Article

                cyclic voltammetry,electrochemical impedance spectroscopy,electrodeposition,electroreduction,heat shock protein 70 (hsp70),silver nanoparticles (agnps),titanium dioxide (tio2),titanium nanotubes (tnts)

                Comments

                Comment on this article