Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d6617590e289">Patients with leukemia who receive a T cell–depleted allogeneic stem cell graft followed by postponed donor lymphocyte infusion (DLI) can experience graft-versus-leukemia (GVL) reactivity, with a lower risk of graft-versus-host disease (GVHD). Here, we have investigated the magnitude, diversity, and specificity of alloreactive CD8 T cells in patients who developed GVL reactivity after DLI in the absence or presence of GVHD. We observed a lower magnitude and diversity of CD8 T cells for minor histocompatibility antigens (MiHAs) in patients with selective GVL reactivity without GVHD. Furthermore, we demonstrated that MiHA-specific T cell clones from patients with selective GVL reactivity showed lower reactivity against nonhematopoietic cells, even when pretreated with inflammatory cytokines. Expression analysis of MiHA-encoding genes showed that similar types of antigens were recognized in both patient groups, but in patients who developed GVHD, T cell reactivity was skewed to target broadly expressed MiHAs. As an inflammatory environment can render nonhematopoietic cells susceptible to T cell recognition, prevention of such circumstances favors induction of selective GVL reactivity without development of GVHD. </p>

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Graft-versus-host disease.

          Haemopoietic-cell transplantation (HCT) is an intensive therapy used to treat high-risk haematological malignant disorders and other life-threatening haematological and genetic diseases. The main complication of HCT is graft-versus-host disease (GVHD), an immunological disorder that affects many organ systems, including the gastrointestinal tract, liver, skin, and lungs. The number of patients with this complication continues to grow, and many return home from transplant centres after HCT requiring continued treatment with immunosuppressive drugs that increases their risks for serious infections and other complications. In this Seminar, we review our understanding of the risk factors and causes of GHVD, the cellular and cytokine networks implicated in its pathophysiology, and current strategies to prevent and treat the disease. We also summarise supportive-care measures that are essential for management of this medically fragile population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease.

            The relationship between intestinal microbiota composition and acute graft-versus-host disease (GVHD) after allogeneic blood/marrow transplantation (allo-BMT) is not well understood. Intestinal bacteria have long been thought to contribute to GVHD pathophysiology, but recent animal studies in nontransplant settings have found that anti-inflammatory effects are mediated by certain subpopulations of intestinal commensals. Hypothesizing that a more nuanced relationship may exist between the intestinal bacteria and GVHD, we evaluated the fecal bacterial composition of 64 patients 12 days after BMT. We found that increased bacterial diversity was associated with reduced GVHD-related mortality. Furthermore, harboring increased amounts of bacteria belonging to the genus Blautia was associated with reduced GVHD lethality in this cohort and was confirmed in another independent cohort of 51 patients from the same institution. Blautia abundance was also associated with improved overall survival. We evaluated the abundance of Blautia with respect to clinical factors and found that loss of Blautia was associated with treatment with antibiotics that inhibit anaerobic bacteria and receiving total parenteral nutrition for longer durations. We conclude that increased abundance of commensal bacteria belonging to the Blautia genus is associated with reduced lethal GVHD and improved overall survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Graft-versus-host disease.

              Allogeneic haematopoietic stem-cell transplantation (SCT) is a curative therapy for haematological malignancies and inherited disorders of blood cells, such as sickle-cell anaemia. Mature alphabeta T cells that are contained in the allografts reconstitute T-cell immunity and can eradicate malignant cells in the recipient. Unfortunately, these T cells recognize the recipient as 'non-self' and employ a wide range of immune mechanisms to attack recipient tissues in a process known as graft-versus-host disease (GVHD). The full therapeutic potential of allogeneic haematopoietic SCT will not be realized until approaches to minimize GVHD, while maintaining the positive contributions of donor T cells, are developed. This Review focuses on research in mouse models pursued to achieve this goal.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                February 1 2017
                January 9 2017
                : 127
                : 2
                : 517-529
                Article
                10.1172/JCI86175
                5272193
                28067665
                9aac0970-2941-4d51-9bdd-eb85f1963044
                © 2017
                History

                Comments

                Comment on this article