7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plants are immobile organisms that require roots to efficiently and cost-effectively exploit their habitat for water and nutrients. Plant root systems are dynamic structures capable of altering root branching, root angle, and root growth rates determining overall architecture. This plasticity involves belowground plant-root mediated synergies coupled through a continuum of environmental interactions and endogenous developmental processes facilitating plants to adapt to favorable or adverse soil conditions. Plant root branching is paramount to ensure adequate access to soil water and nutrients. Although substantial resources have been devoted toward this goal, significant knowledge gaps exist. In well-studied systems such as rice and maize, it has become evident that root branching plays a significant role in the acquisition of nutrients and other soil-based resources. In these crop species, specific root branching traits that confer enhanced nutrient acquisition are well-characterized and are already being incorporated into breeding populations. In contrast, the understanding of root branching in root and tuber crop productivity has lagged behind. In this review article, we highlight what is known about root branching in root and tuber crops (RTCs) and mark new research directions, such as the use novel phenotyping methods, examining the changes in root morphology and anatomy under nutrient stress, and germplasm screening with enhanced root architecture for more efficient nutrient capture. These directions will permit a better understanding of the interaction between root branching and nutrient acquisition in these globally important crop species.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: not found
          • Article: not found

          Root Architecture and Plant Productivity.

          J. Lynch (1995)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Assessing the impact of the green revolution, 1960 to 2000.

            We summarize the findings of a recently completed study of the productivity impacts of international crop genetic improvement research in developing countries. Over the period 1960 to 2000, international agricultural research centers, in collaboration with national research programs, contributed to the development of "modern varieties" for many crops. These varieties have contributed to large increases in crop production. Productivity gains, however, have been uneven across crops and regions. Consumers generally benefited from declines in food prices. Farmers benefited only where cost reductions exceeded price reductions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Roots of the Second Green Revolution

              The Green Revolution boosted crop yields in developing nations by introducing dwarf genotypes of wheat and rice capable of responding to fertilisation without lodging. We now need a second Green Revolution, to improve the yield of crops grown in infertile soils by farmers with little access to fertiliser, who represent the majority of third-world farmers. Just as the Green Revolution was based on crops responsive to high soil fertility, the second Green Revolution will be based on crops tolerant of low soil fertility. Substantial genetic variation in the productivity of crops in infertile soil has been known for over a century. In recent years we have developed a better understanding of the traits responsible for this variation. Root architecture is critically important by determining soil exploration and therefore nutrient acquisition. Architectural traits under genetic control include basal-root gravitropism, adventitious-root formation and lateral branching. Architectural traits that enhance topsoil foraging are important for acquisition of phosphorus from infertile soils. Genetic variation in the length and density of root hairs is important for the acquisition of immobile nutrients such as phosphorus and potassium. Genetic variation in root cortical aerenchyma formation and secondary development (‘root etiolation’) are important in reducing the metabolic costs of root growth and soil exploration. Genetic variation in rhizosphere modification through the efflux of protons, organic acids and enzymes is important for the mobilisation of nutrients such as phosphorus and transition metals, and the avoidance of aluminum toxicity. Manipulation of ion transporters may be useful for improving the acquisition of nitrate and for enhancing salt tolerance. With the noteworthy exceptions of rhizosphere modification and ion transporters, most of these traits are under complex genetic control. Genetic variation in these traits is associated with substantial yield gains in low-fertility soils, as illustrated by the case of phosphorus efficiency in bean and soybean. In breeding crops for low-fertility soils, selection for specific root traits through direct phenotypic evaluation or molecular markers is likely to be more productive than conventional field screening. Crop genotypes with greater yield in infertile soils will substantially improve the productivity and sustainability of low-input agroecosystems, and in high-input agroecosystems will reduce the environmental impacts of intensive fertilisation. Although the development of crops with reduced fertiliser requirements has been successful in the few cases it has been attempted, the global scientific effort devoted to this enterprise is small, especially considering the magnitude of the humanitarian, environmental and economic benefits being forgone. Population growth, ongoing soil degradation and increasing costs of chemical fertiliser will make the second Green Revolution a priority for plant biology in the 21st century.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                04 March 2019
                2019
                : 10
                : 237
                Affiliations
                [1] 1Department of Plant Science, The Pennsylvania State University , University Park, PA, United States
                [2] 2Sweet Potato Research Station, Louisiana State University Agricultural Center , Chase, LA, United States
                Author notes

                Edited by: Joseph G. Dubrovsky, National Autonomous University of Mexico, Mexico

                Reviewed by: Johannes Auke Postma, Forschungszentrum Jülich, Germany; Peter John Gregory, University of Reading, United Kingdom

                *Correspondence: Arthur Villordon, avillordon@ 123456agcenter.lsu.edu

                This article was submitted to Plant Development and EvoDevo, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.00237
                6409306
                30886622
                9ac9beb7-ffed-4d6e-aeb7-f69e894ced2c
                Copyright © 2019 Duque and Villordon.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 November 2018
                : 12 February 2019
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 105, Pages: 8, Words: 0
                Categories
                Plant Science
                Review

                Plant science & Botany
                root system architecture (rsa),root and tuber crops,nutrient efficiency,sweetpotato,potato,yam,cassava

                Comments

                Comment on this article