3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Artificial Intelligence in the Diagnosis and Prognosis of Renal Cell Tumors

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The increasing availability of molecular data provided by next-generation sequencing (NGS) techniques is allowing improvement in the possibilities of diagnosis and prognosis in renal cancer. Reliable and accurate predictors based on selected gene panels are urgently needed for better stratification of renal cell carcinoma (RCC) patients in order to define a personalized treatment plan. Artificial intelligence (AI) algorithms are currently in development for this purpose. Here, we reviewed studies that developed predictors based on AI algorithms for diagnosis and prognosis in renal cancer and we compared them with non-AI-based predictors. Comparing study results, it emerges that the AI prediction performance is good and slightly better than non-AI-based ones. However, there have been only minor improvements in AI predictors in terms of accuracy and the area under the receiver operating curve (AUC) over the last decade and the number of genes used had little influence on these indices. Furthermore, we highlight that different studies having the same goal obtain similar performance despite the fact they use different discriminating genes. This is surprising because genes related to the diagnosis or prognosis are expected to be tumor-specific and independent of selection methods and algorithms. The performance of these predictors will be better with the improvement in the learning methods, as the number of cases increases and by using different types of input data (e.g., non-coding RNAs, proteomic and metabolic). This will allow for more precise identification, classification and staging of cancerous lesions which will be less affected by interpathologist variability.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead

          Black box machine learning models are currently being used for high stakes decision-making throughout society, causing problems throughout healthcare, criminal justice, and in other domains. People have hoped that creating methods for explaining these black box models will alleviate some of these problems, but trying to explain black box models, rather than creating models that are interpretable in the first place, is likely to perpetuate bad practices and can potentially cause catastrophic harm to society. There is a way forward - it is to design models that are inherently interpretable. This manuscript clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare, and computer vision.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours.

            The fourth edition of the World Health Organization (WHO) classification of urogenital tumours (WHO "blue book"), published in 2016, contains significant revisions. These revisions were performed after consideration by a large international group of pathologists with special expertise in this area. A subgroup of these persons met at the WHO Consensus Conference in Zurich, Switzerland, in 2015 to finalize the revisions. This review summarizes the most significant differences between the newly published classification and the prior version for renal, penile, and testicular tumours. Newly recognized epithelial renal tumours are hereditary leiomyomatosis and renal cell carcinoma (RCC) syndrome-associated RCC, succinate dehydrogenase-deficient RCC, tubulocystic RCC, acquired cystic disease-associated RCC, and clear cell papillary RCC. The WHO/International Society of Urological Pathology renal tumour grading system was recommended, and the definition of renal papillary adenoma was modified. The new WHO classification of penile squamous cell carcinomas is based on the presence of human papillomavirus and defines histologic subtypes accordingly. Germ cell neoplasia in situ (GCNIS) of the testis is the WHO-recommended term for precursor lesions of invasive germ cell tumours, and testicular germ cell tumours are now separated into two fundamentally different groups: those derived from GCNIS and those unrelated to GCNIS. Spermatocytic seminoma has been designated as a spermatocytic tumour and placed within the group of non-GCNIS-related tumours in the 2016 WHO classification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial intelligence in medicine.

              Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Diagnostics (Basel)
                Diagnostics (Basel)
                diagnostics
                Diagnostics
                MDPI
                2075-4418
                30 January 2021
                February 2021
                : 11
                : 2
                : 206
                Affiliations
                [1 ]Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; m.giulietti@ 123456univpm.it (M.G.); m.cecati@ 123456univpm.it (M.C.); b.sabanovic@ 123456pm.univpm.it (B.S.)
                [2 ]Department of Life and Environmental Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; a.a.scire@ 123456univpm.it
                [3 ]Section of Pathological Anatomy, Polytechnic University of Marche, United Hospitals, 60126 Ancona, Italy; a.cimadamore@ 123456staff.univpm.it (A.C.); r.montironi@ 123456staff.univpm.it (R.M.)
                [4 ]Oncology Unit, Macerata Hospital, 62012 Macerata, Italy; mattymo@ 123456alice.it
                Author notes
                [* ]Correspondence: f.piva@ 123456univpm.it
                Author information
                https://orcid.org/0000-0002-8288-6989
                https://orcid.org/0000-0001-5981-3514
                Article
                diagnostics-11-00206
                10.3390/diagnostics11020206
                7912267
                33573278
                9b11d672-c4cd-499f-a616-4c23f7c2e3a0
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 December 2020
                : 26 January 2021
                Categories
                Review

                renal cancer,machine learning,artificial neural networks,support vector machines,random forests,ngs

                Comments

                Comment on this article