23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Complete Mitochondrial Genome of Delia antiqua and Its Implications in Dipteran Phylogenetics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Delia antiqua is a major underground agricultural pest widely distributed in Asia, Europe and North America. In this study, we sequenced and annotated the complete mitochondrial genome of this species, which is the first report of complete mitochondrial genome in the family Anthomyiidae. This genome is a double-stranded circular molecule with a length of 16,141 bp and an A+T content of 78.5%. It contains 37 genes (13 protein-coding genes, 22 tRNAs and 2 rRNAs) and a non-coding A+T rich region or control region. The mitochondrial genome of Delia antiqua presents a clear bias in nucleotide composition with a positive AT-skew and a negative GC-skew. All of the 13 protein-coding genes use ATN as an initiation codon except for the COI gene that starts with ATCA. Most protein-coding genes have complete termination codons but COII and ND5 that have the incomplete termination codon T. This bias is reflected in both codon usage and amino acid composition. The protein-coding genes in the D. antiqua mitochondrial genome prefer to use the codon UUA (Leu). All of the tRNAs have the typical clover-leaf structure, except for tRNA Ser(AGN) that does not contain the dihydrouridine (DHU) arm like in many other insects. There are 7 mismatches with U-U in the tRNAs. The location and structure of the two rRNAs are conservative and stable when compared with other insects. The control region between 12S rRNA and tRNA Ile has the highest A+T content of 93.7% in the D. antiqua mitochondrial genome. The control region includes three kinds of special regions, two highly conserved poly-T stretches, a (TA) n stretch and several G(A) nT structures considered important elements related to replication and transcription. The nucleotide sequences of 13 protein-coding genes are used to construct the phylogenetics of 26 representative Dipteran species. Both maximum likelihood and Bayesian inference analyses suggest a closer relationship of D. antiqua in Anthomyiidae with Calliphoridae, Calliphoridae is a paraphyly, and both Oestroidea and Muscoidea are polyphyletic.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          MRBAYES: Bayesian inference of phylogenetic trees.

          The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The incomplete natural history of mitochondria.

            Mitochondrial DNA (mtDNA) has been used to study molecular ecology and phylogeography for 25 years. Much important information has been gained in this way, but it is time to reflect on the biology of the mitochondrion itself and consider opportunities for evolutionary studies of the organelle itself and its ecology, biochemistry and physiology. This review has four sections. First, we review aspects of the natural history of mitochondria and their DNA to show that it is a unique molecule with specific characteristics that differ from nuclear DNA. We do not attempt to cover the plethora of differences between mitochondrial and nuclear DNA; rather we spotlight differences that can cause significant bias when inferring demographic properties of populations and/or the evolutionary history of species. We focus on recombination, effective population size and mutation rate. Second, we explore some of the difficulties in interpreting phylogeographical data from mtDNA data alone and suggest a broader use of multiple nuclear markers. We argue that mtDNA is not a sufficient marker for phylogeographical studies if the focus of the investigation is the species and not the organelle. We focus on the potential bias caused by introgression. Third, we show that it is not safe to assume a priori that mtDNA evolves as a strictly neutral marker because both direct and indirect selection influence mitochondria. We outline some of the statistical tests of neutrality that can, and should, be applied to mtDNA sequence data prior to making any global statements concerning the history of the organism. We conclude with a critical examination of the neglected biology of mitochondria and point out several surprising gaps in the state of our knowledge about this important organelle. Here we limelight mitochondrial ecology, sexually antagonistic selection, life-history evolution including ageing and disease, and the evolution of mitochondrial inheritance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid evolution of animal mitochondrial DNA.

              Mitochondrial DNA was purified from four species of higher primates (Guinea baboon, rhesus macaque, guenon, and human) and digested with 11 restriction endonucleases. A cleavage map was constructed for the mitochondrial DNA of each species. Comparison of the maps, aligned with respect to the origin and direction of DNA replication, revealed that the species differ from one another at most of the cleavage sites. The degree of divergence in nucleotide sequence at these sites was calculated from the fraction of cleavage sites shared by each pair of species. By plotting the degree of divergence in mitochondrial DNA against time of divergence, the rate of base substitution could be calculated from the initial slope of the curve. The value obtained, 0.02 substitutions per base pair per million years, was compared with the value for single-copy nuclear DNA. The rate of evolution of the mitochondrial genome appears to exceed that of the single-copy fraction of the nuclear genome by a factor of about 10. This high rate may be due, in part, to an elevated rate of mutation in mitochondrial DNA. Because of the high rate of evolution, mitochondrial DNA is likely to be an extremely useful molecule to employ for high-resolution analysis of the evolutionary process.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                1 October 2015
                2015
                : 10
                : 10
                : e0139736
                Affiliations
                [001]Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
                Sichuan University, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BC NXZ. Performed the experiments: NXZ GY TJL QYH YZ FLS SR. Analyzed the data: NXZ BC. Wrote the paper: NXZ BC.

                Article
                PONE-D-15-25867
                10.1371/journal.pone.0139736
                4591329
                26427045
                9b265930-0e36-4182-b345-36e6b211183f
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 13 June 2015
                : 15 September 2015
                Page count
                Figures: 5, Tables: 5, Pages: 16
                Funding
                This work was supported by Par-Eu Scholars Program, and grants from The National Natural Science Foundation of China (31372265), and Coordinated Research Project of the International Atomic Energy Agency (18268/R0), and Science and Technology Projects Affiliated to the Education Department of Chongqing Municipality (KJ1400527 and KJ1400517).
                Categories
                Research Article
                Custom metadata
                The complete mitochondrial genome sequence is deposited at GenBank with accession number KT026595.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article