3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pulsatile Stretch Stimulates Superoxide Production in Human Aortic Endothelial Cells

      1 , 1
      Circulation
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background Free radicals such as superoxide and nitric oxide (NO) play a key role in the pathophysiology of atherosclerosis. Mechanical forces such as pulsatile stretch may be involved in free radical production. We studied superoxide production by pulsatile stretch in human endothelial cells.

          Methods and Results Human cultured aortic endothelial cells were exposed to pulsatile stretch up to 24 hours, and superoxide production was examined. Short-term stretch for 1 hour (10% average elongation, 50 cycles per minute) increased superoxide production 2.2-fold. This effect was reduced by diphenyleneiodonium chloride, an NADPH oxidase inhibitor, but not by the xanthine oxidase inhibitor oxypurinol or the cyclooxygenase inhibitor indomethacin. Prolonged stretch up to 6 hours increased superoxide production, but it returned to near the control level after 24 hours of stretch. However, after blockade of NO production, 24 hours of stretch did increase superoxide production 2.4-fold compared with 24 hours of stretch alone. Moreover, 24-hour stretch doubled NO synthase (NOS) (III) protein and mRNA expression. The tetrahydrobiopterin synthesis inhibitor 2,4-diamino-6-hydroxypyrimidine had no effect on unstretched cells but doubled superoxide production compared with 24-hour stretch alone; this increase was halved by cotreatment with 6-methyl-5,6,7,8-tetrahydropterine, a lipid-soluble form of tetrahydrobiopterine.

          Conclusions Short-term stretch increased superoxide production from human aortic endothelial cells via NADPH oxidase and NOS (III), whereas prolonged stretch increased both superoxide and NO production. The increase in NOS (III) protein with prolonged stretch acts as a scavenger mechanism whereby NO inactivates superoxide. Tetrahydrobiopterin determines the balance of superoxide and NO production from NOS (III) after prolonged stretch in which NOS (III) level is upregulated.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase.

            The constitutive endothelial cell nitric oxide synthase (NOS) importantly regulates vascular homeostasis. To gain understanding of this enzyme, a pEF BOS cDNA library of 5 x 10(5) clones was prepared from bovine aortic endothelial cells (BAEC) and screened with a 2.8-kb cDNA BamHI fragment of rat brain NOS. Clone pBOS13 was found to express NO synthase activity when transfected into COS-7 cells. Sequence analysis revealed sequences compatible with binding domains for calcium/calmodulin, flavin mononucleotide, flavin adenine nucleotide and NADPH. The deduced amino acid sequence revealed a protein with a relative mol mass of 133,286, which is 58% homologous to the rat cerebellar NOS and 51% homologous to the mouse macrophage NOS. The amino-terminal portion of the protein exhibits several characteristics peculiar to the endothelial cell NOS. These include a proline-rich region and several potential sites for proline-directed phosphorylation as well as a potential substrate site for acyl transferase. Northern hybridization to mRNA from cultured BAEC revealed an abundant 4.8-kb message, which was not increased by coincubation with tumor necrosis factor alpha, but was markedly increased by exposure to shear stress for 24 h. The unique features of the endothelial cell NO synthase, particularly in the amino terminal portion of the molecule, may provide for novel regulatory influences of enzyme activity and localization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitric oxide and oxygen radicals: a question of balance.

              The production of superoxide and nitric oxide individually has been associated with the development of several diseases but only recently has it been realised that interactions between them may also be important in disease pathology. The central hypothesis which is emerging is that the balance between nitric oxide and superoxide generation is a critical determinant in the aetiology of many human diseases including atherosclerosis, neurodegenerative disease, ischaemia-reperfusion and cancer. These ideas are discussed in this short overview and placed in the context of the current and future status of therapies which could modulate the balance between nitric oxide and superoxide.
                Bookmark

                Author and article information

                Journal
                Circulation
                Circulation
                Ovid Technologies (Wolters Kluwer Health)
                0009-7322
                1524-4539
                November 18 1997
                November 18 1997
                : 96
                : 10
                : 3610-3616
                Affiliations
                [1 ]From Cardiology, University Hospital, Inselspital, Bern and Zurich, and Cardiovascular Research, Institute of Physiology, University Zurich, Switzerland.
                Article
                10.1161/01.CIR.96.10.3610
                9baf9f40-d6cb-45f8-8f3e-85ebc776967f
                © 1997
                History

                Comments

                Comment on this article