7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined administration of SHP2 inhibitor SHP099 and the α7nAChR agonist PNU282987 protect mice against DSS-induced colitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammatory bowel disease (IBD) is a chronic inflammatory condition with complex pathogenesis that currently has no cure . α7 nicotinic acetylcholine receptor (α7nAChR) is known to regulate multiple aspects of immune function. The present study aimed to evaluate the protective effects of PNU282987 and SHP099, which are a selective agonist of α7nAChR and an SHP2 inhibitor, respectively, in dextran sulfate sodium (DSS)-induced colitis in mice. Acute colitis was induced in mice using 3% DSS, and weight loss, colonic histology and cytokine production from colonic lamina propria were analyzed to evaluate disease severity. Bone marrow-derived macrophages were treated with lipopolysaccharide (LPS) to induce an inflammatory response. Cytokine expression and reactive oxygen species (ROS) levels were quantified. The α7nAChR agonist, PNU282987, and the SHP2 inhibitor, SHP099, were administered alone or in combination to LPS-induced macrophages or to colitic model mice to evaluate the inflammatory response and protective efficacy in colitis. α7nAChR protein levels were found to be markedly increased in the colon of DSS-induced colitic mice, and were found to co-localize with macrophages. Consistently, α7nAChR mRNA and protein levels were upregulated with colitis progression in DSS-induced colitic mice. Colonic inflammation was attenuated by PNU282987 treatment in DSS-induced mice, as evidenced by reduced weight loss and alleviated colonic epithelial cell disruption. These effects of PNU282987 on colitis were enhanced when it was combined with SHP099. Cytokine production and ROS levels induced by LPS in macrophages were decreased by a combination treatment of PNU282987 and SHP099. These findings identified α7nAChR as an essential element in the role of intestinal macrophages in colonic repair and demonstrated a synergistic effect of PNU282987 and SHP099, suggesting a new potential therapy for IBD.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Brain-gut interactions in inflammatory bowel disease.

          Psycho-neuro-endocrine-immune modulation through the brain-gut axis likely has a key role in the pathogenesis of inflammatory bowel disease (IBD). The brain-gut axis involves interactions among the neural components, including (1) the autonomic nervous system, (2) the central nervous system, (3) the stress system (hypothalamic-pituitary-adrenal axis), (4) the (gastrointestinal) corticotropin-releasing factor system, and (5) the intestinal response (including the intestinal barrier, the luminal microbiota, and the intestinal immune response). Animal models suggest that the cholinergic anti-inflammatory pathway through an anti-tumor necrosis factor effect of the efferent vagus nerve could be a therapeutic target in IBD through a pharmacologic, nutritional, or neurostimulation approach. In addition, the psychophysiological vulnerability of patients with IBD, secondary to the potential presence of any mood disorders, distress, increased perceived stress, or maladaptive coping strategies, underscores the psychological needs of patients with IBD. Clinicians need to address these issues with patients because there is emerging evidence that stress or other negative psychological attributes may have an effect on the disease course. Future research may include exploration of markers of brain-gut interactions, including serum/salivary cortisol (as a marker of the hypothalamic-pituitary-adrenal axis), heart rate variability (as a marker of the sympathovagal balance), or brain imaging studies. The widespread use and potential impact of complementary and alternative medicine and the positive response to placebo (in clinical trials) is further evidence that exploring other psycho-interventions may be important therapeutic adjuncts to the conventional therapeutic approach in IBD. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation.

            Although the gastrointestinal tract contains intrinsic neural plexuses that allow a significant degree of independent control over gastrointestinal functions, the central nervous system provides extrinsic neural inputs that modulate, regulate, and integrate these functions. In particular, the vagus nerve provides the parasympathetic innervation to the gastrointestinal tract, coordinating the complex interactions between central and peripheral neural control mechanisms. This review discusses the physiological roles of the afferent (sensory) and motor (efferent) vagus in regulation of appetite, mood, and the immune system, as well as the pathophysiological outcomes of vagus nerve dysfunction resulting in obesity, mood disorders, and inflammation. The therapeutic potential of vagus nerve modulation to attenuate or reverse these pathophysiological outcomes and restore autonomic homeostasis is also discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors

                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                September 2020
                10 July 2020
                10 July 2020
                : 22
                : 3
                : 2235-2244
                Affiliations
                [1 ]Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
                [2 ]Department of Pharmacology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
                Author notes
                Correspondence to: Professor Chunfang Xu, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizhi Street, Suzhou, Jiangsu 215006, P.R. China, E-mail: xcf601@ 123456163.com
                [*]

                Contributed equally

                Article
                mmr-22-03-2235
                10.3892/mmr.2020.11324
                7411392
                32705242
                9bc59080-d4c7-4a26-b533-c3962c97525e
                Copyright: © Xiao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 02 October 2019
                : 28 April 2020
                Categories
                Articles

                colitis,macrophages,pnu282987,shp099
                colitis, macrophages, pnu282987, shp099

                Comments

                Comment on this article