45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Morphological changes in tibial tunnels after anatomic anterior cruciate ligament reconstruction with hamstring tendon graft

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Three-dimensional (3D) reconstructed computed tomography (CT) is crucial for the reliable and accurate evaluation of tunnel enlargement after anterior cruciate ligament (ACL) reconstruction. The purposes of this study were to evaluate the tibial tunnel enlargement at the tunnel aperture and inside the tunnel and to clarify the morphological change at the tunnel footprint 1 year after the anatomic triple-bundle (ATB) ACL reconstruction using 3D CT models.

          Methods

          Eighteen patients with unilateral ACL rupture were evaluated. The ATB ACL reconstruction with a semitendinosus tendon autograft was performed. 3D computer models of the tibia and the three tibial tunnels were reconstructed from CT data obtained 3 weeks and 1 year after surgery. The cross-sectional areas (CSAs) of the two anterior and the one posterior tunnels were measured at the tunnel aperture and 5 and 10 mm distal from the aperture and compared between the two periods. The locations of the center and the anterior, posterior, medial, and lateral edges of each tunnel footprint were also measured and compared between the two periods.

          Results

          The CSA of the posterior tunnel was significantly enlarged at the aperture by 40.4%, whereas that of the anterior tunnels did not change significantly, although the enlargement rate was 6.1%. On the other hand, the CSA was significantly reduced at 10 mm distal from the aperture in the anterior tunnels. The enlargement rate in the posterior tunnel was significantly greater than that in the anterior tunnels at the aperture. The center of the posterior tunnel footprint significantly shifted postero-laterally. The anterior and posterior edges of the posterior tunnel footprint demonstrated a significant posterior shift, while the lateral edge significantly shifted laterally. There was no significant shift of the center or all the edges of the anterior tunnels footprint.

          Conclusions

          The posterior tibial tunnel was significantly enlarged at the aperture by 40% with the morphological change in the postero-lateral direction reflected by the ACL fiber orientation 1 year after the ATB ACL reconstruction. The proper tibial tunnel location in the ACL reconstruction should be determined considering the tunnel enlargement in postero-lateral direction after surgery.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction?

          Radiographic enlargement of bone tunnels following anterior cruciate ligament (ACL) reconstruction has been recently introduced in the literature; however, the etiology and clinical relevance of this phenomenon remain unclear. While early reports suggested that bone tunnel enlargement is mainly the result of an immune response to allograft tissue, more recent studies imply that other biological as well as mechanical factors play a more important role. Biological factors associated with tunnel enlargement include foreign-body immune response (against allografts), non-specific inflammatory response (as in osteolysis around total joint implants), cell necrosis due to toxic products in the tunnel (ethylene oxide, metal), and heat necrosis as a response to drilling (natural course). Mechanical factors contributing to tunnel enlargement include stress deprivation of bone within the tunnel wall, graft-tunnel motion, improper tunnel placement, and aggressive rehabilitation. Graft-tunnel motion refers to longitudinal and transverse motion of the graft within the bone tunnel and can occur with various graft types and fixation techniques. Aggressive rehabilitation programmes may contribute to tunnel enlargement as the graft-bone interface is subjected to early stress before biological incorporation is complete. Further basic research is required to verify the effect of the various proposed factors on the etiology of bone tunnel enlargement. We recommend that routine follow-up examinations after ACL reconstruction should include the measurement of bone tunnel size in order to contribute to a better understanding of the incidence, time course, and clinical relevance of this phenomenon. Improved and more anatomical surgical fixation techniques may be useful for the prevention of bone tunnel enlargement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion?

            Motion between a tendon graft and bone tunnel may impair graft incorporation and lead to tunnel widening. Healing of a tendon graft in a bone tunnel is inhibited by graft-tunnel motion. Controlled laboratory study. Anterior cruciate ligament reconstruction was performed in 5 cadaveric rabbit limbs, and 3-dimensional graft-tunnel motion was measured using micro-computed tomography. The authors then performed bilateral anterior cruciate ligament reconstruction in 15 rabbits and used histomorphometry to compare tendon-to-bone healing between the tunnel aperture, midtunnel, and tunnel exit and between the anterior and posterior aspects of the tunnel. Graft-tunnel motion was greatest at the tunnel apertures and least at the tunnel exit in cadaveric testing. Healing of the graft was slowest at the tunnel apertures. Tendon-bone interface width was greater at the aperture than at the tunnel exit for the femoral tunnel (P = .04). There was an inverse correlation between time zero graft-tunnel motion and healing in the femoral tunnel (P = .005). There was closer apposition of new bone to the tendon graft in the posterior half of the interface (P < .05). Osteoclasts were found at the tunnel apertures. Although graft-tunnel motion was only measured in cadaveric animals, results suggest that healing may be affected by the local mechanical environment, as graft healing in the femoral tunnel was inversely proportional to the magnitude of graft-tunnel motion. Graft-tunnel motion may impair early graft incorporation and may lead to osteoclast-mediated bone resorption, contributing to tunnel widening. Early, aggressive postoperative rehabilitation may have detrimental effects on graft-to-bone healing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An algorithmic overview of surface registration techniques for medical imaging.

              This paper presents a literature survey of automatic 3D surface registration techniques emphasizing the mathematical and algorithmic underpinnings of the subject. The relevance of surface registration to medical imaging is that there is much useful anatomical information in the form of collected surface points which originate from complimentary modalities and which must be reconciled. Surface registration can be roughly partitioned into three issues: choice of transformation, elaboration of surface representation and similarity criterion, and matching and global optimization. The first issue concerns the assumptions made about the nature of relationships between the two modalities, e.g. whether a rigid-body assumption applies, and if not, what type and how general a relation optimally maps one modality onto the other. The second issue determines what type of information we extract from the 3D surfaces, which typically characterizes their local or global shape, and how we organize this information into a representation of the surface which will lead to improved efficiency and robustness in the last stage. The last issue pertains to how we exploit this information to estimate the transformation which best aligns local primitives in a globally consistent manner or which maximizes a measure of the similarity in global shape of two surfaces. Within this framework, this paper discusses in detail each surface registration issue and reviews the state-of-the-art among existing techniques.
                Bookmark

                Author and article information

                Contributors
                +81-6-6879-3552 , ta-mae@umin.ac.jp
                Journal
                J Exp Orthop
                J Exp Orthop
                Journal of Experimental Orthopaedics
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2197-1153
                15 September 2017
                15 September 2017
                December 2017
                : 4
                : 30
                Affiliations
                [1 ]ISNI 0000 0004 0373 3971, GRID grid.136593.b, Department of Orthopaedic Surgery, , Osaka University Graduate School of Medicine, ; 2-2, Yamada-oka, Suita, Osaka, 565-0871 Japan
                [2 ]ISNI 0000 0004 0378 260X, GRID grid.417381.8, Sports Orthopaedic Surgery Center, , Yukioka Hospital, ; 2-2-3, Ukita, Kita-ku, Osaka, Osaka, 530-0021 Japan
                Article
                104
                10.1186/s40634-017-0104-6
                5602815
                28916912
                9bccd116-0fcc-4be3-abc5-1f91f913d54c
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 29 June 2017
                : 4 September 2017
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                anterior cruciate ligament,anatomic,tunnel enlargement,tibia,cross-sectional area,hamstring tendon,three-dimension,computed tomography,knee

                Comments

                Comment on this article