20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hydroxytyrosol: Health Benefits and Use as Functional Ingredient in Meat

      review-article
      , , *
      Medicines
      MDPI
      hydroxytyrosol, antioxidant, antimicrobial, meat, preservative, health

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydroxytyrosol (HXT) is a phenolic compound drawn from the olive tree and its leaves as a by-product obtained from the manufacturing of olive oil. It is considered the most powerful antioxidant compound after gallic acid and one of the most powerful antioxidant compounds between phenolic compounds from olive tree followed by oleuropein, caffeic and tyrosol. Due to its molecular structure, its regular consumption has several beneficial effects such as antioxidant, anti-inflammatory, anticancer, and as a protector of skin and eyes, etc. For these reasons, the use of HXT extract is a good strategy for use in meat products to replace synthetics additives. However, this extract has a strong odour and flavour, so it is necessary to previously treat this compound in order to not alter the organoleptic quality of the meat product when is added as ingredient. The present review exposes the health benefits provided by HXT consumption and the latest research about its use on meat. In addition, new trends about the application of HXT in the list of ingredients of healthier meat products will be discussed.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Protein carbonyls in meat systems: a review.

          Protein oxidation (P-OX) is an innovative topic of increasing interest among meat researchers. Carbonylation is generally recognized as one of the most remarkable chemical modifications in oxidized proteins. In fact, the quantification of protein carbonyls by the dinitrophenylhydrazine (DNPH) method is the most common procedure for assessing P-OX in meat systems. Numerous studies have investigated the occurrence of protein carbonylation right after slaughter and during subsequent processing and cold storage of meat. However, the significance of protein carbonylation in meat systems is still poorly understood. Beyond their role as markers of protein oxidation, specific protein carbonyls such as α-aminoadipic and γ-glutamic semialdehydes (AAS and GGS, respectively) are active compounds that may be implicated in several chemical reactions with relevant consequences on meat quality. The formation of protein carbonyls from particular amino acid side chains contribute to impair the conformation of myofibrillar proteins leading to denaturation and loss of functionality. Recent studies also highlight the potential impact of specific protein carbonyls in particular meat quality traits such as water-holding capacity (WHC), texture, flavor and its nutritional value. As a truly emerging topic, the results from current studies provide grounds from the development of further investigations. The present paper reviews the current knowledge on the mechanisms and consequences of protein carbonylation in meat systems and aims to encourage meat researchers to accomplish further investigations on this fascinating research topic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant extracts as natural antioxidants in meat and meat products.

            Antioxidants are used to minimize the oxidative changes in meat and meat products. Oxidative changes may have negative effects on the quality of meat and meat products, causing changes in their sensory and nutritional properties. Although synthetic antioxidants have already been used but in recent years, the demand for natural antioxidants has been increased mainly because of adverse effects of synthetic antioxidants. Thus most of the recent investigations have been directed towards the identification of natural antioxidants from various plant sources. Plant extracts have been prepared using different solvents and extraction methods. Grape seed, green tea, pine bark, rosemary, pomegranate, nettle and cinnamon have exhibited similar or better antioxidant properties compared to some synthetic ones. This review provides the recent information on plant extracts used as natural antioxidants in meat and meat products, specifically red meat.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Olive-oil consumption and health: the possible role of antioxidants.

              In the Mediterranean basin, olive oil, along with fruits, vegetables, and fish, is an important constituent of the diet, and is considered a major factor in preserving a healthy and relatively disease-free population. Epidemiological data show that the Mediterranean diet has significant protective effects against cancer and coronary heart disease. We present evidence that it is the unique profile of the phenolic fraction, along with high intakes of squalene and the monounsaturated fatty acid, oleic acid, which confer its health-promoting properties. The major phenolic compounds identified and quantified in olive oil belong to three different classes: simple phenols (hydroxytyrosol, tyrosol); secoiridoids (oleuropein, the aglycone of ligstroside, and their respective decarboxylated dialdehyde derivatives); and the lignans [(+)-1-acetoxypinoresinol and pinoresinol]. All three classes have potent antioxidant properties. High consumption of extra-virgin olive oils, which are particularly rich in these phenolic antioxidants (as well as squalene and oleic acid), should afford considerable protection against cancer (colon, breast, skin), coronary heart disease, and ageing by inhibiting oxidative stress.
                Bookmark

                Author and article information

                Journal
                Medicines (Basel)
                Medicines (Basel)
                medicines
                Medicines
                MDPI
                2305-6320
                23 January 2018
                March 2018
                : 5
                : 1
                : 13
                Affiliations
                Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum” (Economy based on agri-food), Campus de Espinardo, 30100 Espinardo, Murcia, Spain; lorena.martinez23@ 123456um.es (L.M.); gros@ 123456um.es (G.R.)
                Author notes
                [* ]Correspondence: gnieto@ 123456um.es ; Tel.: +34-868-889624; Fax: +34-868-884147
                Author information
                https://orcid.org/0000-0003-2349-2899
                Article
                medicines-05-00013
                10.3390/medicines5010013
                5874578
                29360770
                9bd89771-a117-4414-9829-f6382fe8d73e
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 December 2017
                : 20 January 2018
                Categories
                Review

                hydroxytyrosol,antioxidant,antimicrobial,meat,preservative,health

                Comments

                Comment on this article