33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Towards universal influenza vaccines?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the development and production of pandemic influenza vaccines are response time and production capacity as well as vaccine efficacy and safety. Several improvements can be envisaged. Vaccine production technologies based on embryonated chicken eggs may be replaced by cell culture techniques. Reverse genetics techniques can speed up the generation of seed viruses and new mathematical modelling methods improve vaccine strain selection. Better understanding of the correlates of immune-mediated protection may lead to new vaccine targets besides the viral haemagglutinin, like the neuraminidase and M2 proteins. In addition, the role of cell-mediated immunity could be better exploited. New adjuvants have recently been shown to increase the breadth and the duration of influenza vaccine-induced protection. Other studies have shown that influenza vaccines based on different viral vector systems may also induce broad protection. It is to be expected that these developments may lead to more universal influenza vaccines that elicit broader and longer protection, and can be produced more efficiently.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of broadly neutralizing H1N1 influenza antibodies by vaccination.

          The rapid dissemination of the 2009 pandemic influenza virus underscores the need for universal influenza vaccines that elicit protective immunity to diverse viral strains. Here, we show that vaccination with plasmid DNA encoding H1N1 influenza hemagglutinin (HA) and boosting with seasonal vaccine or replication-defective adenovirus 5 vector encoding HA stimulated the production of broadly neutralizing influenza antibodies. This prime/boost combination increased the neutralization of diverse H1N1 strains dating from 1934 to 2007 as compared to either component alone and conferred protection against divergent H1N1 viruses in mice and ferrets. These antibodies were directed to the conserved stem region of HA and were also elicited in nonhuman primates. Cross-neutralization of H1N1 subtypes elicited by this approach provides a basis for the development of a universal influenza vaccine for humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses.

            Annual influenza epidemics in humans affect 5-15% of the population, causing an estimated half million deaths worldwide per year [Stohr K. Influenza-WHO cares. Lancet Infectious Diseases 2002;2(9):517]. The virus can infect this proportion of people year after year because the virus has an extensive capacity to evolve and thus evade the immune response. For example, since the influenza A(H3N2) subtype entered the human population in 1968 the A(H3N2) component of the influenza vaccine has had to be updated almost 30 times to track the evolution of the viruses and remain effective. The World Health Organization Global Influenza Surveillance Network (WHO GISN) tracks and analyzes the evolution and epidemiology of influenza viruses for the primary purpose of vaccine strain selection and to improve the strain selection process through studies aimed at better understanding virus evolution and epidemiology. Here we give an overview of the strain selection process and outline recent investigations into the global migration of seasonal influenza viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cross-recognition of avian H5N1 influenza virus by human cytotoxic T-lymphocyte populations directed to human influenza A virus.

              Since the number of human cases of infection with avian H5N1 influenza viruses is ever increasing, a pandemic outbreak caused by these viruses is feared. Therefore, in addition to virus-specific antibodies, there is considerable interest in immune correlates of protection against these viruses, which could be a target for the development of more universal vaccines. After infection with seasonal influenza A viruses of the H3N2 and H1N1 subtypes, individuals develop virus-specific cytotoxic T-lymphocyte responses, which are mainly directed against the relatively conserved internal proteins of the virus, like the nucleoprotein (NP). Virus-specific cytotoxic T lymphocytes (CTL) are known to contribute to protective immunity against infection, but knowledge about the extent of cross-reactivity with avian H5N1 influenza viruses is sparse. In the present study, we evaluated the cross-reactivity with H5N1 influenza viruses of polyclonal CTL obtained from a group of well-defined HLA-typed study subjects. To this end, the recognition of synthetic peptides representing H5N1 analogues of known CTL epitopes was studied. In addition, the ability of CTL specific for seasonal H3N2 influenza virus to recognize the NP of H5N1 influenza virus or H5N1 virus-infected cells was tested. It was concluded that, apart from some individual epitopes that displayed amino acid variation between H3N2 and H5N1 influenza viruses, considerable cross-reactivity exists with H5N1 viruses. This preexisting cross-reactive T-cell immunity in the human population may dampen the impact of a next pandemic.
                Bookmark

                Author and article information

                Journal
                Philos Trans R Soc Lond B Biol Sci
                RSTB
                royptb
                Philosophical Transactions of the Royal Society B: Biological Sciences
                The Royal Society
                0962-8436
                1471-2970
                12 October 2011
                12 October 2011
                : 366
                : 1579 , Discussion Meeting issue 'New vaccines for global health' organized and edited by Brian Greenwood and Adrian V. S. Hill
                : 2766-2773
                Affiliations
                Department of Virology, simpleErasmus MC , Rotterdam, The Netherlands
                Author notes
                [* ]Author for correspondence ( a.osterhaus@ 123456erasmusmc.nl ).

                One contribution of 16 to a Discussion Meeting Issue ‘ New vaccines for global health’.

                Article
                rstb20110102
                10.1098/rstb.2011.0102
                3146782
                21893539
                9c0b303c-4cf1-44f4-9a9b-cc96d5fdf766
                This journal is © 2011 The Royal Society

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                1001
                87
                Articles

                Philosophy of science
                universal flu vaccines,seasonal flu vaccines,influenza
                Philosophy of science
                universal flu vaccines, seasonal flu vaccines, influenza

                Comments

                Comment on this article