2
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review of the Parasites of Deep-Water Fishes from Macaronesian Islands, North-East Atlantic Ocean

      , , ,
      The Open Parasitology Journal
      Bentham Science Publishers Ltd.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The deep-water fish fauna of Macaronesian islands is currently estimated at a total of 1029 different fish species, but records of both ecto- and endoparasites are from only about 30 of those species. This fact presents an exciting field of research for scientists interested in fish parasitology, by exploring the structure of parasite communities and their connections with ecological and oceanographic variables. Research on the effect of climatic changes on the parasite faunas, on the occurrence of fish parasites in man and its impact on human health, has not been carried out to date. The present review aims to collate our present knowledge about the parasites of deep-water fishes of Macaronesia, and to suggest directions for future research on the parasites of fishes from the deepwater realm. A checklist of the parasites infecting the deep-water fishes from this region is included.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: not found
          • Article: not found

          Standardized diet compositions and trophic levels of sharks

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity.

            Infection of humans with the nematode worm parasite Anisakis simplex was first described in the 1960s in association with the consumption of raw or undercooked fish. During the 1990s it was realized that even the ingestion of dead worms in food fish can cause severe hypersensitivity reactions, that these may be more prevalent than infection itself, and that this outcome could be associated with food preparations previously considered safe. Not only may allergic symptoms arise from infection by the parasites ("gastroallergic anisakiasis"), but true anaphylactic reactions can also occur following exposure to allergens from dead worms by food-borne, airborne, or skin contact routes. This review discusses A. simplex pathogenesis in humans, covering immune hypersensitivity reactions both in the context of a living infection and in terms of exposure to its allergens by other routes. Over the last 20 years, several studies have concentrated on A. simplex antigen characterization and innate as well as adaptive immune response to this parasite. Molecular characterization of Anisakis allergens and isolation of their encoding cDNAs is now an active field of research that should provide improved diagnostic tools in addition to tools with which to enhance our understanding of pathogenesis and controversial aspects of A. simplex allergy. We also discuss the potential relevance of parasite products such as allergens, proteinases, and proteinase inhibitors and the activation of basophils, eosinophils, and mast cells in the induction of A. simplex-related immune hypersensitivity states induced by exposure to the parasite, dead or alive.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impacts of climate change on marine organisms and ecosystems.

              Human activities are releasing gigatonnes of carbon to the Earth's atmosphere annually. Direct consequences of cumulative post-industrial emissions include increasing global temperature, perturbed regional weather patterns, rising sea levels, acidifying oceans, changed nutrient loads and altered ocean circulation. These and other physical consequences are affecting marine biological processes from genes to ecosystems, over scales from rock pools to ocean basins, impacting ecosystem services and threatening human food security. The rates of physical change are unprecedented in some cases. Biological change is likely to be commensurately quick, although the resistance and resilience of organisms and ecosystems is highly variable. Biological changes founded in physiological response manifest as species range-changes, invasions and extinctions, and ecosystem regime shifts. Given the essential roles that oceans play in planetary function and provision of human sustenance, the grand challenge is to intervene before more tipping points are passed and marine ecosystems follow less-buffered terrestrial systems further down a spiral of decline. Although ocean bioengineering may alleviate change, this is not without risk. The principal brake to climate change remains reduced CO(2) emissions that marine scientists and custodians of the marine environment can lobby for and contribute to. This review describes present-day climate change, setting it in context with historical change, considers consequences of climate change for marine biological processes now and in to the future, and discusses contributions that marine systems could play in mitigating the impacts of global climate change.
                Bookmark

                Author and article information

                Journal
                The Open Parasitology Journal
                TOPARAJ
                Bentham Science Publishers Ltd.
                1874-4214
                July 31 2018
                July 31 2018
                : 6
                : 1
                : 17-31
                Article
                10.2174/1874421401806010017
                9c1bdd5c-492a-490d-abfa-d2ba5695817e
                © 2018

                https://creativecommons.org/licenses/by/4.0/legalcode

                History

                Medicine,Chemistry,Life sciences
                Medicine, Chemistry, Life sciences

                Comments

                Comment on this article