51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Production of Hybrid Chimeric PVX Particles Using a Combination of TMV and PVX-Based Expression Vectors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have generated hybrid chimeric potato virus X (PVX) particles by coexpression of different PVX coat protein fusions utilizing tobacco mosaic virus (TMV) and PVX-based expression vectors. Coinfection was achieved with a modified PVX overcoat vector displaying a fluorescent protein and a TMV vector expressing another PVX fluorescent overcoat fusion protein. Coexpression of the PVX-CP fusions in the same cells was confirmed by epifluorescence microscopy. Labeling with specific antibodies and transmission electron microscopy revealed chimeric particles displaying green fluorescent protein and mCherry on the surface. These data were corroborated by bimolecular fluorescence complementation. We used split-mCherry fragments as PVX coat fusions and confirmed an interaction between the split-mCherry fragments in coinfected cells. The presence of assembled split-mCherry on the surface confirmed the hybrid character of the chimeric particles.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'.

          The 2A region of the aphthovirus foot-and-mouth disease virus (FMDV) polyprotein is only 18 aa long. A 'primary' intramolecular polyprotein processing event mediated by 2A occurs at its own C terminus. FMDV 2A activity was studied in artificial polyproteins in which sequences encoding reporter proteins flanked the 2A sequence such that a single, long, open reading frame was created. The self-processing properties of these artificial polyproteins were investigated and the co-translational 'cleavage' products quantified. The processing products from our artificial polyprotein systems showed a molar excess of 'cleavage' product N-terminal of 2A over the product C-terminal of 2A. A series of experiments was performed to characterize our in vitro translation systems. These experiments eliminated the translational or transcriptional properties of the in vitro systems as an explanation for this imbalance. In addition, the processing products derived from a control construct encoding the P1P2 region of the human rhinovirus polyprotein, known to be proteolytically processed, were quantified and found to be equimolar. Translation of a construct encoding green fluorescent protein (GFP), FMDV 2A and beta-glucuronidase, also in a single open reading frame, in the presence of puromycin, showed this antibiotic to be preferentially incorporated into the [GFP2A] translation product. We conclude that the discrete translation products from our artificial polyproteins are not produced by proteolysis. We propose that the FMDV 2A sequence, rather than representing a proteolytic element, modifies the activity of the ribosome to promote hydrolysis of the peptidyl(2A)-tRNA(Gly) ester linkage, thereby releasing the polypeptide from the translational complex, in a manner that allows the synthesis of a discrete downstream translation product to proceed. This process produces a ribosomal 'skip' from one codon to the next without the formation of a peptide bond.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences.

            The 2A/2B cleavage of aphtho- and cardiovirus 2A polyproteins is mediated by their 2A proteins 'cleaving' at their own C termini. We have analysed this activity using artificial reporter polyprotein systems comprising green fluorescent protein (GFP) linked via foot-and-mouth disease virus (FMDV) 2A to beta-glucuronidase (GUS) -- forming a single, long, open reading frame. Analysis of the distribution of radiolabel showed a high proportion of the in vitro translation products (approximately 90%) were in the form of the 'cleavage' products GUS and [GFP2A]. Alternative models have been proposed to account for the 'cleavage' activity: proteolysis by a host-cell proteinase, autoproteolysis or a translational effect. To investigate the mechanism of this cleavage event constructs encoding site-directed mutant and naturally occurring '2A-like' sequences were used to program in vitro translation systems and the gel profiles analysed. Analysis of site-directed mutant 2A sequences showed that 'cleavage' occurred in constructs in which all the candidate nucleophilic residues were substituted -- with the exception of aspartate-12. This residue is not, however, conserved amongst all functional '2A-like' sequences. '2A-like' sequences were identified within insect virus polyproteins, the NS34 protein of type C rotaviruses, repeated sequences in Trypanosoma spp. and a eubacterial alpha-glucosiduronasesequence(Thermatoga maritima aguA). All of the 2A-like sequences analysed were active (to various extents), other than the eubacterial alpha-glucosiduronase 2A-like sequence. This method of control of protein biogenesis may well not, therefore, be confined to members of the PICORNAVIRIDAE: Taken together, these data provide additional evidence that neither FMDV 2A nor '2A-like' sequences are autoproteolytic elements.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Molecular farming in plants: host systems and expression technology.

                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/291814
                URI : http://frontiersin.org/people/u/196861
                URI : http://frontiersin.org/people/u/29512
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                20 November 2015
                2015
                : 3
                : 189
                Affiliations
                [1] 1Institute for Molecular Biotechnology, RWTH Aachen University , Aachen, Germany
                [2] 2Fraunhofer Institute for Molecular Biology and Applied Ecology , Aachen, Germany
                Author notes

                Edited by: George Peter Lomonossoff, John Innes Centre, UK

                Reviewed by: Martha Magaretha O’Kennedy, Council for Scientific and Industrial Research, South Africa; Kashmir Singh, Panjab University, India

                *Correspondence: Ulrich Commandeur, commandeur@ 123456molbiotech.rwth-aachen.de

                Specialty section: This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2015.00189
                4653303
                9c4bb603-4c17-42e2-bc5c-30e64804eab7
                Copyright © 2015 Dickmeis, Honickel, Fischer and Commandeur.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 September 2015
                : 04 November 2015
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 67, Pages: 12, Words: 8303
                Funding
                Funded by: RWTH Aachen University
                Categories
                Bioengineering and Biotechnology
                Original Research

                potato virus x,tobacco mosaic virus,hybrid chimeric particles,viral vectors,coexpression,fluorescent proteins,nanoparticles

                Comments

                Comment on this article