22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNAs and Osteoarthritis

      review-article
      Cells
      MDPI
      apoptosis, articular cartilage, autophagy, chondrocytes, extracellular matrix, microRNA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An imbalance in gene expressional events skewing chondrocyte anabolic and catabolic pathways toward the latter causes an aberrant turnover and loss of extracellular matrix proteins in osteoarthritic (OA) articular cartilage. Thus, catabolism results in the elevated loss of extracellular matrix proteins. There is also evidence of an increase in the frequency of chondrocyte apoptosis that compromises the capacity of articular cartilage to undergo repair. Although much of the fundamental OA studies over the past 20 years identified and characterized many genes relevant to pro-inflammatory cytokines, apoptosis, and matrix metalloproteinases (MMPs)/a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS), more recent studies focused on epigenetic mechanisms and the associated role of microRNAs (miRs) in regulating gene expression in OA cartilage. Thus, several miRs were identified as regulators of chondrocyte signaling pathways, apoptosis, and proteinase gene expression. For example, the reduced expression of miR-146a was found to be coupled to reduced type II collagen (COL2) in OA cartilage, whereas MMP-13 levels were increased, suggesting an association between MMP-13 gene expression and COL2A1 gene expression. Results of these studies imply that microRNAs could become useful in the search for diagnostic biomarkers, as well as providing novel therapeutic targets for intervention in OA.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Biomarkers of Chondrocyte Apoptosis and Autophagy in Osteoarthritis

          Cell death with morphological and molecular features of apoptosis has been detected in osteoarthritic (OA) cartilage, which suggests a key role for chondrocyte death/survival in the pathogenesis of OA. Identification of biomarkers of chondrocyte apoptosis may facilitate the development of novel therapies that may eliminate the cause or, at least, slow down the degenerative processes in OA. The aim of this review was to explore the molecular markers and signals that induce chondrocyte apoptosis in OA. A literature search was conducted in PubMed, Scopus, Web of Science and Google Scholar using the keywords chondrocyte death, apoptosis, osteoarthritis, autophagy and biomarker. Several molecules considered to be markers of chondrocyte apoptosis will be discussed in this brief review. Molecular markers and signalling pathways associated with chondroycte apoptosis may turn out to be therapeutic targets in OA and approaches aimed at neutralizing apoptosis-inducing molecules may at least delay the progression of cartilage degeneration in OA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macro view of microRNA function in osteoarthritis.

            Osteoarthritis (OA), the most common musculoskeletal disorder, is complex, multifaceted, and characterized by degradation of articular cartilage and alterations in other joint tissues. Although some pathogenic pathways have been characterized, current knowledge is incomplete and effective approaches to the prevention or treatment of OA are lacking. Understanding novel molecular mechanisms that are involved in the maintenance and destruction of articular cartilage, including extracellular regulators and intracellular signalling mechanisms in joint cells that control cartilage homeostasis, has the potential to identify new therapeutic targets in OA. MicroRNAs control tissue development and homeostasis by fine-tuning gene expression, with expression patterns specific to tissues and developmental stages, and are increasingly implicated in the pathogenesis of complex diseases such as cancer and cardiovascular disorders. The emergent roles of microRNAs in cartilage homeostasis and OA pathogenesis are summarized in this Review, alongside potential clinical applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNAs: exploring new horizons in osteoarthritis.

              Osteoarthritis (OA) is a common disease worldwide leading to significant morbidity. The underlying disease process is multifactorial however there is increasing focus on molecular mechanisms. MicroRNAs are small non-coding segments of RNA that have important regulatory functions at a cellular level. These molecules are readily detectable in human tissues and circulation. They are increasingly recognised as having a major role in many disease processes - including malignancy and inflammatory processes.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                01 August 2018
                August 2018
                : 7
                : 8
                : 92
                Affiliations
                Department of Medicine, Division of Rheumatic Diseases, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Cleveland, OH 44106-5076, USA; cjm4@ 123456cwru.edu ; Tel.: +1-(216)-536-1945; Fax: +1-(216)-844-2288
                Article
                cells-07-00092
                10.3390/cells7080092
                6115911
                30071609
                9c7dd4f3-b158-4733-a92c-5274457596cf
                © 2018 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 July 2018
                : 29 July 2018
                Categories
                Review

                apoptosis,articular cartilage,autophagy,chondrocytes,extracellular matrix,microrna

                Comments

                Comment on this article