7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of gantry spacing resolution on plan quality in a single modulated arc optimization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Volumetric‐modulated arc technique (VMAT) is an efficient form of IMRT delivery. It is advantageous over conventional IMRT in terms of treatment delivery time. This study investigates the relation between the number of segments and plan quality in VMAT optimization for a single modulated arc. Five prostate, five lung, and five head‐and‐neck (HN) patient plans were studied retrospectively. For each case, four VMAT plans were generated. The plans differed only in the number of control points used in the optimization process. The control points were spaced 2°, 3°, 4°, and 6° apart, respectively. All of the optimization parameters were the same among the four schemes. The 2° spacing plan was used as a reference to which the other three plans were compared. The plan quality was assessed by comparison of dose indices (DIs) and generalized equivalent uniform doses (gEUDs) for targets and critical structures. All optimization schemes generated clinically acceptable plans. The differences between the majority of reference and compared DIs and gEUDs were within 3%. DIs and gEUDs which differed in excess of 3% corresponded to dose levels well below the organ tolerances. The DI and the gEUD differences increased with an increase in plan complexity from prostates to HNs. Optimization with gantry spacing resolution of 4° seems to be a very balanced alternative between plan quality and plan complexity.

          PACS number: 87.55.de

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Volumetric modulated arc therapy: IMRT in a single gantry arc.

          In this work a novel plan optimization platform is presented where treatment is delivered efficiently and accurately in a single dynamically modulated arc. Improvements in patient care achieved through image-guided positioning and plan adaptation have resulted in an increase in overall treatment times. Intensity-modulated radiation therapy (IMRT) has also increased treatment time by requiring a larger number of beam directions, increased monitor units (MU), and, in the case of tomotherapy, a slice-by-slice delivery. In order to maintain a similar level of patient throughput it will be necessary to increase the efficiency of treatment delivery. The solution proposed here is a novel aperture-based algorithm for treatment plan optimization where dose is delivered during a single gantry arc of up to 360 deg. The technique is similar to tomotherapy in that a full 360 deg of beam directions are available for optimization but is fundamentally different in that the entire dose volume is delivered in a single source rotation. The new technique is referred to as volumetric modulated arc therapy (VMAT). Multileaf collimator (MLC) leaf motion and number of MU per degree of gantry rotation is restricted during the optimization so that gantry rotation speed, leaf translation speed, and dose rate maxima do not excessively limit the delivery efficiency. During planning, investigators model continuous gantry motion by a coarse sampling of static gantry positions and fluence maps or MLC aperture shapes. The technique presented here is unique in that gantry and MLC position sampling is progressively increased throughout the optimization. Using the full gantry range will theoretically provide increased flexibility in generating highly conformal treatment plans. In practice, the additional flexibility is somewhat negated by the additional constraints placed on the amount of MLC leaf motion between gantry samples. A series of studies are performed that characterize the relationship between gantry and MLC sampling, dose modeling accuracy, and optimization time. Results show that gantry angle and MLC sample spacing as low as 1 deg and 0.5 cm, respectively, is desirable for accurate dose modeling. It is also shown that reducing the sample spacing dramatically reduces the ability of the optimization to arrive at a solution. The competing benefits of having small and large sample spacing are mutually realized using the progressive sampling technique described here. Preliminary results show that plans generated with VMAT optimization exhibit dose distributions equivalent or superior to static gantry IMRT. Timing studies have shown that the VMAT technique is well suited for on-line verification and adaptation with delivery times that are reduced to approximately 1.5-3 min for a 200 cGy fraction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reporting and analyzing dose distributions: a concept of equivalent uniform dose.

            Modern treatment planning systems for three-dimensional treatment planning provide three-dimensionally accurate dose distributions for each individual patient. These data open up new possibilities for more precise reporting and analysis of doses actually delivered to irradiated organs and volumes of interest. A new method of summarizing and reporting inhomogeneous dose distributions is reported here. The concept of equivalent uniform dose (EUD) assumes that any two dose distributions are equivalent if they cause the same radiobiological effect. In this paper the EUD concept for tumors is presented, for which the probability of local control is assumed to be determined by the expected number of surviving clonogens, according to Poisson statistics. The EUD can be calculated directly from the dose calculation points or, from the corresponding dose-volume distributions (histograms). The fraction of clonogens surviving a dose of 2 Gy (SF2) is chosen to be the primary operational parameter characterizing radiosensitivity of clonogens. The application of the EUD concept is demonstrated on a clinical dataset. The causes of flattening of the observed dose-response curves become apparent since the EUD concept reveals the finer structure of the analyzed group of patients in respect to the irradiated volumes and doses actually received. Extensions of the basic EUD concept to include nonuniform density of clonogens, dose per fraction effects, repopulation of clonogens, and inhomogeneity of patient population are discussed and compared with the basic formula.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy.

              C. X. Yu (1995)
              The desire to improve local tumour control and cure more cancer patients, coupled with advances in computer technology and linear accelerator design, has spurred the developments of three-dimensional conformal radiotherapy techniques. Optimized treatment plans, aiming to deliver high dose to the target while minimizing dose to the surrounding tissues, can be delivered with multiple fields each with spatially modulated beam intensities or with multiple-slice treatments. This paper introduces a new method, intensity-modulated arc therapy (IMAT), for delivering optimized treatment plans to improve the therapeutic ratio. It utilizes continuous gantry motion as in conventional arc therapy. Unlike conventional arc therapy, the field shape, which is conformed with the multileaf collimator, changes during gantry rotation. Arbitrary two-dimensional beam intensify distributions at different beam angles are delivered with multiple superimposing arcs. A system capable of delivering the IMAT has been implemented. An example is given that illustrates the feasibility of this new method. Advantages of this new technique over tomotherapy and other slice-based delivery schemes are also discussed.
                Bookmark

                Author and article information

                Contributors
                imihaylov@Lifespan.org
                Journal
                J Appl Clin Med Phys
                J Appl Clin Med Phys
                10.1002/(ISSN)1526-9914
                ACM2
                Journal of Applied Clinical Medical Physics
                John Wiley and Sons Inc. (Hoboken )
                1526-9914
                15 November 2011
                Fall 2011
                : 12
                : 4 ( doiID: 10.1002/acm2.2011.12.issue-4 )
                : 175-184
                Affiliations
                [ 1 ] Department of Radiation Oncology Rhode Island Hospital/Brown Medical Center Providence RI 02903
                Author notes
                [*] [* ]Corresponding author: Ivaylo B. Mihaylov, Department of Radiation Oncology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St., Providence, RI 02903; phone: (401) 444‐8546; fax: (401) 444‐2149; email: imihaylov@ 123456Lifespan.org
                Article
                ACM20175
                10.1120/jacmp.v12i4.3603
                5718730
                22089019
                9c981771-6351-4cd7-b82b-9fcca824eac1
                © 2011 The Authors.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 February 2011
                : 02 June 2011
                Page count
                Figures: 7, Tables: 3, References: 30, Pages: 10, Words: 3887
                Categories
                Radiation Oncology Physics
                Radiation Oncology Physics
                Custom metadata
                2.0
                acm20175
                Fall 2011
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.5 mode:remove_FC converted:17.11.2017

                vmat,arc,optimization,dose,imrt,segments
                vmat, arc, optimization, dose, imrt, segments

                Comments

                Comment on this article