1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variants of SERPINA1 and the increasing complexity of testing for alpha-1 antitrypsin deficiency

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alpha-1 antitrypsin deficiency (AATD) is caused by mutations in the SERPINA1 gene, which encodes the alpha-1 antitrypsin (AAT) protein. Currently, over 200 SERPINA1 variants have been identified, many of which cause the quantitative and/or qualitative changes in AAT responsible for AATD-associated lung and liver disease. The types of these pathogenic mutations are varied, often resulting in misfolding, or truncating of the AAT amino acid sequence, and improvements in sequencing technology are helping to identify known and novel genetic variants. However, due to the diversity and novelty of rare variants, the clinical significance of many is largely unknown. There is, therefore, a lack of guidance on how patients should be monitored and treated when the clinical significance of their variant combination is unclear or variable. Nevertheless, it is important that physicians understand the advantages and disadvantages of the different testing methodologies available to diagnose AATD. Owing to the autosomal inheritance of the genetic mutations responsible for AATD, genetic testing should be offered not only to patients at increased AATD risk (e.g. patients with chronic obstructive pulmonary disease), but also to relatives of those with an abnormal result. Genetic counseling may help patients and family members understand the possible outcomes of testing and the implications for the family. While stress/anxiety can arise from genetic diagnosis or confirmation of carrier status, there can be positive consequences to genetic testing, including improved lifestyle choices, directed medical care, and empowered family planning. As genetic testing technology grows and becomes more popular, testing without physician referral is becoming more prevalent, irrespective of the availability of genetic counseling. Therefore, the Alpha-1 Foundation offers genetic counseling, as well as other support and educational material, for patients with AATD, as well as their families and physicians, to help improve the understanding of potential benefits and consequences of genetic testing.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          A method and server for predicting damaging missense mutations

          To the Editor: Applications of rapidly advancing sequencing technologies exacerbate the need to interpret individual sequence variants. Sequencing of phenotyped clinical subjects will soon become a method of choice in studies of the genetic causes of Mendelian and complex diseases. New exon capture techniques will direct sequencing efforts towards the most informative and easily interpretable protein-coding fraction of the genome. Thus, the demand for computational predictions of the impact of protein sequence variants will continue to grow. Here we present a new method and the corresponding software tool, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), which is different from the early tool PolyPhen1 in the set of predictive features, alignment pipeline, and the method of classification (Fig. 1a). PolyPhen-2 uses eight sequence-based and three structure-based predictive features (Supplementary Table 1) which were selected automatically by an iterative greedy algorithm (Supplementary Methods). Majority of these features involve comparison of a property of the wild-type (ancestral, normal) allele and the corresponding property of the mutant (derived, disease-causing) allele, which together define an amino acid replacement. Most informative features characterize how well the two human alleles fit into the pattern of amino acid replacements within the multiple sequence alignment of homologous proteins, how distant the protein harboring the first deviation from the human wild-type allele is from the human protein, and whether the mutant allele originated at a hypermutable site2. The alignment pipeline selects the set of homologous sequences for the analysis using a clustering algorithm and then constructs and refines their multiple alignment (Supplementary Fig. 1). The functional significance of an allele replacement is predicted from its individual features (Supplementary Figs. 2–4) by Naïve Bayes classifier (Supplementary Methods). We used two pairs of datasets to train and test PolyPhen-2. We compiled the first pair, HumDiv, from all 3,155 damaging alleles with known effects on the molecular function causing human Mendelian diseases, present in the UniProt database, together with 6,321 differences between human proteins and their closely related mammalian homologs, assumed to be non-damaging (Supplementary Methods). The second pair, HumVar3, consists of all the 13,032 human disease-causing mutations from UniProt, together with 8,946 human nsSNPs without annotated involvement in disease, which were treated as non-damaging. We found that PolyPhen-2 performance, as presented by its receiver operating characteristic curves, was consistently superior compared to PolyPhen (Fig. 1b) and it also compared favorably with the three other popular prediction tools4–6 (Fig. 1c). For a false positive rate of 20%, PolyPhen-2 achieves the rate of true positive predictions of 92% and 73% on HumDiv and HumVar, respectively (Supplementary Table 2). One reason for a lower accuracy of predictions on HumVar is that nsSNPs assumed to be non-damaging in HumVar contain a sizable fraction of mildly deleterious alleles. In contrast, most of amino acid replacements assumed non-damaging in HumDiv must be close to selective neutrality. Because alleles that are even mildly but unconditionally deleterious cannot be fixed in the evolving lineage, no method based on comparative sequence analysis is ideal for discriminating between drastically and mildly deleterious mutations, which are assigned to the opposite categories in HumVar. Another reason is that HumDiv uses an extra criterion to avoid possible erroneous annotations of damaging mutations. For a mutation, PolyPhen-2 calculates Naïve Bayes posterior probability that this mutation is damaging and reports estimates of false positive (the chance that the mutation is classified as damaging when it is in fact non-damaging) and true positive (the chance that the mutation is classified as damaging when it is indeed damaging) rates. A mutation is also appraised qualitatively, as benign, possibly damaging, or probably damaging (Supplementary Methods). The user can choose between HumDiv- and HumVar-trained PolyPhen-2. Diagnostics of Mendelian diseases requires distinguishing mutations with drastic effects from all the remaining human variation, including abundant mildly deleterious alleles. Thus, HumVar-trained PolyPhen-2 should be used for this task. In contrast, HumDiv-trained PolyPhen-2 should be used for evaluating rare alleles at loci potentially involved in complex phenotypes, dense mapping of regions identified by genome-wide association studies, and analysis of natural selection from sequence data, where even mildly deleterious alleles must be treated as damaging. Supplementary Material 1
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics.

            Disclaimer: These recommendations are designed primarily as an educational resource for medical geneticists and other healthcare providers to help them provide quality medical services. Adherence to these recommendations is completely voluntary and does not necessarily assure a successful medical outcome. These recommendations should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed toward obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this statement. Clinicians also are advised to take notice of the date this statement was adopted and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.To promote standardized reporting of actionable information from clinical genomic sequencing, in 2013, the American College of Medical Genetics and Genomics (ACMG) published a minimum list of genes to be reported as incidental or secondary findings. The goal was to identify and manage risks for selected highly penetrant genetic disorders through established interventions aimed at preventing or significantly reducing morbidity and mortality. The ACMG subsequently established the Secondary Findings Maintenance Working Group to develop a process for curating and updating the list over time. We describe here the new process for accepting and evaluating nominations for updates to the secondary findings list. We also report outcomes from six nominations received in the initial 15 months after the process was implemented. Applying the new process while upholding the core principles of the original policy statement resulted in the addition of four genes and removal of one gene; one gene did not meet criteria for inclusion. The updated secondary findings minimum list includes 59 medically actionable genes recommended for return in clinical genomic sequencing. We discuss future areas of focus, encourage continued input from the medical community, and call for research on the impact of returning genomic secondary findings.Genet Med 19 2, 249-255.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HGVS Recommendations for the Description of Sequence Variants: 2016 Update.

              The consistent and unambiguous description of sequence variants is essential to report and exchange information on the analysis of a genome. In particular, DNA diagnostics critically depends on accurate and standardized description and sharing of the variants detected. The sequence variant nomenclature system proposed in 2000 by the Human Genome Variation Society has been widely adopted and has developed into an internationally accepted standard. The recommendations are currently commissioned through a Sequence Variant Description Working Group (SVD-WG) operating under the auspices of three international organizations: the Human Genome Variation Society (HGVS), the Human Variome Project (HVP), and the Human Genome Organization (HUGO). Requests for modifications and extensions go through the SVD-WG following a standard procedure including a community consultation step. Version numbers are assigned to the nomenclature system to allow users to specify the version used in their variant descriptions. Here, we present the current recommendations, HGVS version 15.11, and briefly summarize the changes that were made since the 2000 publication. Most focus has been on removing inconsistencies and tightening definitions allowing automatic data processing. An extensive version of the recommendations is available online, at http://www.HGVS.org/varnomen.
                Bookmark

                Author and article information

                Contributors
                Journal
                Ther Adv Chronic Dis
                Ther Adv Chronic Dis
                TAJ
                sptaj
                Therapeutic Advances in Chronic Disease
                SAGE Publications (Sage UK: London, England )
                2040-6223
                2040-6231
                29 July 2021
                2021
                : 12_suppl
                : 20406223211015954
                Affiliations
                [1-20406223211015954]Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
                Author notes
                Article
                10.1177_20406223211015954
                10.1177/20406223211015954
                8367212
                34408833
                9cbbbba1-19ad-480d-ac14-69b8f6cfd7b8
                © The Author(s), 2021

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 16 October 2020
                : 20 April 2021
                Funding
                Funded by: CSL Behring, FundRef https://doi.org/10.13039/100008322;
                Categories
                Reviews
                Custom metadata
                January-December 2021
                ts1

                alpha-1 antitrypsin,alpha-1 antitrypsin deficiency,genetic counseling,rare variants,serpina1,testing

                Comments

                Comment on this article