9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative Stress and Cardiovascular Aging: Interaction Between NRF-2 and ADMA

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          The concept of antioxidant therapies assumes high importance as oxidative stress is associated with cardiovascular aging via endothelial dysfunction. This review focuses on exploring the interaction between nrf-2 and ADMA in influencing the nitric oxide pathway and cardiovascular function.

          Objective:

          A systematic review of literature from 1990 to 2016 was conducted using Pubmed and Google Scholar. The literature suggests a strong influence of nrf-2 activation on up regulation of DDAH I which degrades ADMA, the endogenous inhibitor of nitric oxide synthase. The resulting decrease of ADMA would in turn enhance nitric oxide (NO) production. This would support endothelial function by adequate NO production and homeostasis of endothelial function.

          Conclusion:

          As NO production has many positive pleiotropic effects in the cardiovascular system, such an interaction could be utilized for designing molecular therapeutics. The targets for therapy need not be limited to activation of nrf-2. Modulation of molecules downstream such as DDAH I can be used to regulate ADMA levels. Most current literature is supported by animal studies. The concept of antioxidant therapies needs to be tested in well-defined randomized control trials. The biochemical basis of nrf-2 activation needs to be substantiated in human studies.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid.

          Glutathione (GSH) significantly declines in the aging rat liver. Because GSH levels are partly a reflection of its synthetic capacity, we measured the levels and activity of gamma-glutamylcysteine ligase (GCL), the rate-controlling enzyme in GSH synthesis. With age, both the catalytic (GCLC) and modulatory (GCLM) subunits of GCL decreased by 47% and 52%, respectively (P < 0.005). Concomitant with lower subunit levels, GCL activity also declined by 53% (P < 0.05). Because nuclear factor erythroid2-related factor 2 (Nrf2) governs basal and inducible GCLC and GCLM expression by means of the antioxidant response element (ARE), we hypothesized that aging results in dysregulation of Nrf2-mediated GCL expression. We observed an approximately 50% age-related loss in total (P < 0.001) and nuclear (P < 0.0001) Nrf2 levels, which suggests attenuation in Nrf2-dependent gene transcription. By using gel-shift and supershift assays, a marked reduction in Nrf2/ARE binding in old vs. young rats was noted. To determine whether the constitutive loss of Nrf2 transcriptional activity also affects the inducible nature of Nrf2 nuclear translocation, old rats were treated with (R)-alpha-lipoic acid (LA; 40 mg/kg i.p. up to 48 h), a disulfide compound shown to induce Nrf2 activation in vitro and improve GSH levels in vivo. LA administration increased nuclear Nrf2 levels in old rats after 12 h. LA also induced Nrf2 binding to the ARE, and, consequently, higher GCLC levels and GCL activity were observed 24 h after LA injection. Thus, the age-related loss in GSH synthesis may be caused by dysregulation of ARE-mediated gene expression, but chemoprotective agents, like LA, can attenuate this loss.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial aging.

            Aging is considered to be the major risk factor for the development of atherosclerosis and, therefore, for coronary artery disease. Apart from age-associated remodeling of the vascular wall, which includes luminal enlargement, intimal and medial thickening, and increased vascular stiffness, endothelial function declines with age. This is most obvious from the attenuation of endothelium-dependent dilator responses, which is a consequence of the alteration in the expression and/or activity of the endothelial NO synthase, upregulation of the inducible NO synthase, and increased formation of reactive oxygen species. Aging is also associated with a reduction in the regenerative capacity of the endothelium and endothelial senescence, which is characterized by an increased rate of endothelial cell apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure.

              Nitric oxide (NO), synthesised from L-arginine, contributes to the regulation of blood pressure and to host defence. We describe in-vitro and in-vivo evidence that NO synthesis can be inhibited by an endogenous compound, NG,NG-dimethylarginine (asymmetrical dimethylarginine, ADMA). In man, this inhibitor is found in plasma and more than 10 mg is excreted in urine over 24 h. However, in patients with end-stage chronic renal failure, who have little or no urine output, elimination is blocked and circulating concentrations of the inhibitor rise sufficiently to inhibit NO synthesis. Accumulation of endogenous ADMA, leading to impaired NO synthesis, might contribute to the hypertension and immune dysfunction associated with chronic renal failure.
                Bookmark

                Author and article information

                Journal
                Curr Cardiol Rev
                Curr Cardiol Rev
                CCR
                Current Cardiology Reviews
                Bentham Science Publishers
                1573-403X
                1875-6557
                August 2017
                August 2017
                : 13
                : 3
                : 183-188
                Affiliations
                [1 ]Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center , Lubbock, , TX, 79430 , USA;
                [2 ]Memorial Cardiac and Vascular Institute, Hollywood, , FL, 33031 , USA
                Author notes
                [* ]Address correspondence to this author at the Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Tel: 6108641687; E-mail: nandini.nair@ 123456gmail.com
                Article
                CCR-13-183
                10.2174/1573403X13666170216150955
                5633712
                28215178
                9cd21d5b-cbc1-4a59-8785-ed602c626e04
                © 2017 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 13 October 2016
                : 10 January 2017
                : 10 February 2017
                Categories
                Article

                Cardiovascular Medicine
                nrf-2,adma,ddah,oxidative stress,nitric oxide (no),homeostasis
                Cardiovascular Medicine
                nrf-2, adma, ddah, oxidative stress, nitric oxide (no), homeostasis

                Comments

                Comment on this article