20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reconstituted Human Upper Airway Epithelium as 3-D In Vitro Model for Nasal Polyposis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Primary human airway epithelial cells cultured in an air-liquid interface (ALI) develop a well-differentiated epithelium. However, neither characterization of mucociliar differentiation overtime nor the inflammatory function of reconstituted nasal polyp (NP) epithelia have been described.

          Objectives

          1 st) To develop and characterize the mucociliar differentiation overtime of human epithelial cells of chronic rhinosinusitis with nasal polyps (CRSwNP) in ALI culture system; 2 nd) To corroborate that 3D in vitro model of NP reconstituted epithelium maintains, compared to control nasal mucosa (NM), an inflammatory function.

          Methods

          Epithelial cells were obtained from 9 NP and 7 control NM, and differentiated in ALI culture for 28 days. Mucociliary differentiation was characterized at different times (0, 7, 14, 21, and 28 days) using ultrastructure analysis by electron microscopy; ΔNp63 (basal stem/progenitor cell), β-tubulin IV (cilia), and MUC5AC (goblet cell) expression by immunocytochemistry; and mucous (MUC5AC, MUC5B) and serous (Lactoferrin) secretion by ELISA. Inflammatory function of ALI cultures (at days 0, 14, and 28) through cytokine (IL-8, IL-1β, IL-6, IL-10, TNF-α, and IL-12p70) and chemokine (RANTES, MIG, MCP-1, IP-10, eotaxin-1, and GM-CSF) production was analysed by CBA (Cytometric Bead Array).

          Results

          In both NP and control NM ALI cultures, pseudostratified epithelium with ciliated, mucus-secreting, and basal cells were observed by electron microscopy at days 14 and 28. Displaying epithelial cell re-differentation, β-tubulin IV and MUC5AC positive cells increased, while ΔNp63 positive cells decreased overtime. No significant differences were found overtime in MUC5AC, MUC5B, and lactoferrin secretions between both ALI cultures. IL-8 and GM-CSF were significantly increased in NP compared to control NM regenerated epithelia.

          Conclusion

          Reconstituted epithelia from human NP epithelial cells cultured in ALI system provides a 3D in vitro model that could be useful both for studying the role of epithelium in CRSwNP while developing new therapeutic strategies, including cell therapy, for CRSwNP.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Basal cells as stem cells of the mouse trachea and human airway epithelium.

          The pseudostratified epithelium of the mouse trachea and human airways contains a population of basal cells expressing Trp-63 (p63) and cytokeratins 5 (Krt5) and Krt14. Using a KRT5-CreER(T2) transgenic mouse line for lineage tracing, we show that basal cells generate differentiated cells during postnatal growth and in the adult during both steady state and epithelial repair. We have fractionated mouse basal cells by FACS and identified 627 genes preferentially expressed in a basal subpopulation vs. non-BCs. Analysis reveals potential mechanisms regulating basal cells and allows comparison with other epithelial stem cells. To study basal cell behaviors, we describe a simple in vitro clonal sphere-forming assay in which mouse basal cells self-renew and generate luminal cells, including differentiated ciliated cells, in the absence of stroma. The transcriptional profile identified 2 cell-surface markers, ITGA6 and NGFR, which can be used in combination to purify human lung basal cells by FACS. Like those from the mouse trachea, human airway basal cells both self-renew and generate luminal daughters in the sphere-forming assay.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists

            The European Position Paper on Rhinosinusitis and Nasal Polyps 2012 is the update of similar evidence based position papers published in 2005 and 2007. The document contains chapters on definitions and classification, we now also proposed definitions for difficult to treat rhinosinusitis, control of disease and better definitions for rhinosinusitis in children. More emphasis is placed on the diagnosis and treatment of acute rhinosinusitis. Throughout the document the terms chronic rhinosinusitis without nasal polyps (CRSsNP) and chronic rhinosinusitis with nasal polyps (CRSwNP) are used to further point out differences in pathophysiology and treatment of these two entities. There are extensive chapters on epidemiology and predisposing factors, inflammatory mechanisms, (differential) diagnosis of facial pain, genetics, cystic fibrosis, aspirin exacerbated respiratory disease, immunodeficiencies, allergic fungal rhinosinusitis and the relationship between upper and lower airways. The chapters on paediatric acute and chronic rhinosinusitis are totally rewritten. Last but not least all available evidence for management of acute rhinosinusitis and chronic rhinosinusitis with or without nasal polyps in adults and children is analyzed and presented and management schemes based on the evidence are proposed. This executive summary for otorhinolaryngologists focuses on the most important changes and issues for otorhinolaryngologists. The full document can be downloaded for free on the website of this journal: http://www.rhinologyjournal.com.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling.

              The small airways of the human lung undergo pathological changes in pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, bronchiolitis obliterans and cystic fibrosis. These clinical problems impose huge personal and societal healthcare burdens. The changes, termed 'pathological airway remodeling', affect the epithelium, the underlying mesenchyme and the reciprocal trophic interactions that occur between these tissues. Most of the normal human airway is lined by a pseudostratified epithelium of ciliated cells, secretory cells and 6-30% basal cells, the proportion of which varies along the proximal-distal axis. Epithelial abnormalities range from hypoplasia (failure to differentiate) to basal- and goblet-cell hyperplasia, squamous- and goblet-cell metaplasia, dysplasia and malignant transformation. Mesenchymal alterations include thickening of the basal lamina, smooth muscle hyperplasia, fibrosis and inflammatory cell accumulation. Paradoxically, given the prevalence and importance of airway remodeling in lung disease, its etiology is poorly understood. This is due, in part, to a lack of basic knowledge of the mechanisms that regulate the differentiation, maintenance and repair of the airway epithelium. Specifically, little is known about the proliferation and differentiation of basal cells, a multipotent stem cell population of the pseudostratified airway epithelium. This Perspective summarizes what we know, and what we need to know, about airway basal cells to evaluate their contributions to normal and abnormal airway remodeling. We contend that exploiting well-described model systems using both human airway epithelial cells and the pseudostratified epithelium of the genetically tractable mouse trachea will enable crucial discoveries regarding the pathogenesis of airway disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                19 June 2014
                : 9
                : 6
                : e100537
                Affiliations
                [1 ]Clinical and Experimental Respiratory Immunoallergy, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
                [2 ]CIBER of Respiratory Diseases (CIBERES), Barcelona, Spain
                [3 ]Rhinology Unit & Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
                [4 ]Pneumology & Respiratory Allergy Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
                Comprehensive Pneumology Center, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FBC AM JR JM. Performed the experiments: FBC MF. Analyzed the data: FBC AM JC CP JR JM. Contributed reagents/materials/analysis tools: IA MF. Wrote the paper: FBC AM JR JM. Provision of study material or patients: IA. Final approval of manuscript: CP JR JM.

                Article
                PONE-D-14-05704
                10.1371/journal.pone.0100537
                4063947
                24945146
                9d93693f-07f2-42b6-9dee-0659a259dba8
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 February 2014
                : 26 May 2014
                Page count
                Pages: 12
                Funding
                This work was funded by research grants (PI08-0188 and PI12-01129) from Fondo de Investigaciones de la Seguridad Social, Instituto de Salud Carlos III ( http://www.isciii.es/), MINECO (Ministerio de Economía y Competividad, http://www.idi.mineco.gob.es/portal/site/MICINN/), and co-funded by FEDER ( http://ec.europa.eu/regional_policy/thefunds/regional/index_en.cfm), Spain. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Epithelium
                Epithelial Cells
                Respiratory System
                Biochemistry
                Biotechnology
                Bioengineering
                Biomedical Engineering
                Cell Biology
                Cell Processes
                Cell Growth
                Cellular Types
                Animal Cells
                Stem Cells
                Adult Stem Cells
                Cell Physiology
                Molecular Cell Biology
                Developmental Biology
                Morphogenesis
                Regeneration
                Cell Differentiation
                Immunology
                Immunochemistry
                Engineering and Technology
                Medicine and Health Sciences
                Otorhinolaryngology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article