6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Control of coronary vascular resistance by eicosanoids via a novel GPCR

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Arachidonic acid metabolites epoxyeicosatrienoates (EETs) and hydroxyeicosatetraenoates (HETEs) are important regulators of myocardial blood flow and coronary vascular resistance (CVR), but their mechanisms of action are not fully understood. We applied a chemoproteomics strategy using a clickable photoaffinity probe to identify G protein-coupled receptor 39 (GPR39) as a microvascular smooth muscle cell (mVSMC) receptor selective for two endogenous eicosanoids, 15-HETE and 14,15-EET, which act on the receptor to oppose each other’s activity. The former increases mVSMC intracellular calcium via GPR39 and augments coronary microvascular resistance, and the latter inhibits these actions. Furthermore, we find that the efficacy of both ligands is potentiated by zinc acting as an allosteric modulator. Measurements of coronary perfusion pressure (CPP) in GPR39-null hearts using the Langendorff preparation indicate the receptor senses these eicosanoids to regulate microvascular tone. These results implicate GPR39 as an eicosanoid receptor and key regulator of myocardial tissue perfusion. Our findings will have a major impact on understanding the roles of eicosanoids in cardiovascular physiology and disease and provide an opportunity for the development of novel GPR39-targeting therapies for cardiovascular disease.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Human Serum Metabolome

          Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lipidomics reveals a remarkable diversity of lipids in human plasma.

            The focus of the present study was to define the human plasma lipidome and to establish novel analytical methodologies to quantify the large spectrum of plasma lipids. Partial lipid analysis is now a regular part of every patient's blood test and physicians readily and regularly prescribe drugs that alter the levels of major plasma lipids such as cholesterol and triglycerides. Plasma contains many thousands of distinct lipid molecular species that fall into six main categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenols. The physiological contributions of these diverse lipids and how their levels change in response to therapy remain largely unknown. As a first step toward answering these questions, we provide herein an in-depth lipidomics analysis of a pooled human plasma obtained from healthy individuals after overnight fasting and with a gender balance and an ethnic distribution that is representative of the US population. In total, we quantitatively assessed the levels of over 500 distinct molecular species distributed among the main lipid categories. As more information is obtained regarding the roles of individual lipids in health and disease, it seems likely that future blood tests will include an ever increasing number of these lipid molecules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors.

              Endothelial cells release several compounds, including prostacyclin, NO, and endothelium-derived hyperpolarizing factor (EDHF), that mediate the vascular effects of vasoactive hormones. The identity of EDHF remains unknown. Since arachidonic acid causes endothelium-dependent relaxations of coronary arteries through its metabolism to epoxyeicosatrienoic acids (EETs) by cytochrome P450, we wondered if the EETs represent EDHFs. Precontracted bovine coronary arteries relaxed in an endothelium-dependent manner to methacholine. The cytochrome P450 inhibitors, SKF 525A and miconazole, significantly attenuated these relaxations. They were also inhibited by tetraethylammonium (TEA),an inhibitor of Ca2+-activated K+ channels, and by high [K+]0 (20 mmol/L). Methacholine also caused hyperpolarization of coronary smooth muscle (-27 +/- 3.9 versus -40 +/- 5.1 mV), which was completely blocked by SKF 525A and miconazole. In vessels prelabeled with [3H] arachidonic acid, methacholine stimulated the release of 6-ketoprostaglandin F1alpha, 12-HETE, and the EETs. Arachidonic acid relaxed precontracted coronary arteries, which were also blocked by TEA, charybdotoxin, another Ca2+-activated K+ channel inhibitor, and high [K+]0. 14,15-EET, 11,12-EET, 8,9-EET, and 5,6-EET relaxed precontracted coronary vessels (EC50, 1 X 10(-6) mol/L). The four regioisomers were equally active. TEA, charybdotoxin, and high [K+]0 attenuated the EET relaxations. 11,12-EET hyperpolarized coronary smooth muscle cells from -37 +/- 0.2 to -59 +/- 0.3 mV. In the cell-attached mode of patch clamp, both 14,15-EET and 11,12-EET increased the open-state probability of a Ca2+-activated K+ channel in coronary smooth muscle cells. This effect was blocked by TEA and charybdotoxin. These data support the hypothesis that the EETs are EDHFs.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                American Journal of Physiology-Cell Physiology
                American Journal of Physiology-Cell Physiology
                American Physiological Society
                0363-6143
                1522-1563
                May 01 2022
                May 01 2022
                : 322
                : 5
                : C1011-C1021
                Affiliations
                [1 ]Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
                [2 ]The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
                [3 ]Medicinal Chemistry Core, Oregon Health & Science University, Portland, Oregon
                [4 ]Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon
                [5 ]Department of Pathology, Oregon Health & Science University, Portland, Oregon
                Article
                10.1152/ajpcell.00454.2021
                35385329
                9deda212-a3e0-447a-9a5d-3d9e224fc85b
                © 2022
                History

                Comments

                Comment on this article