956
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Flupyradifurone: a brief profile of a new butenolide insecticide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND

          The development and commercialisation of new chemical classes of insecticides for efficient crop protection measures against destructive invertebrate pests is of utmost importance to overcome resistance issues and to secure sustainable crop yields. Flupyradifurone introduced here is the first representative of the novel butenolide class of insecticides active against various sucking pests and showing an excellent safety profile.

          RESULTS

          The discovery of flupyradifurone was inspired by the butenolide scaffold in naturally occurring stemofoline. Flupyradifurone acts reversibly as an agonist on insect nicotinic acetylcholine receptors but is structurally different from known agonists, as shown by chemical similarity analysis. It shows a fast action on a broad range of sucking pests, as demonstrated in laboratory bioassays, and exhibits excellent field efficacy on a number of crops with different application methods, including foliar, soil, seed treatment and drip irrigation. It is readily taken up by plants and translocated in the xylem, as demonstrated by phosphor imaging analysis. Flupyradifurone is active on resistant pests, including cotton whiteflies, and is not metabolised by recombinantly expressed CYP6CM1, a cytochrome P450 conferring metabolic resistance to neonicotinoids and pymetrozine.

          CONCLUSION

          The novel butenolide insecticide flupyradifurone shows unique properties and will become a new tool for integrated pest management around the globe, as demonstrated by its insecticidal, ecotoxicological and safety profile. © 2014 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.

          1. The extracellular patch clamp method, which first allowed the detection of single channel currents in biological membranes, has been further refined to enable higher current resolution, direct membrane patch potential control, and physical isolation of membrane patches. 2. A description of a convenient method for the fabrication of patch recording pipettes is given together with procedures followed to achieve giga-seals i.e. pipette-membrane seals with resistances of 10(9) - 10(11) omega. 3. The basic patch clamp recording circuit, and designs for improved frequency response are described along with the present limitations in recording the currents from single channels. 4. Procedures for preparation and recording from three representative cell types are given. Some properties of single acetylcholine-activated channels in muscle membrane are described to illustrate the improved current and time resolution achieved with giga-seals. 5. A description is given of the various ways that patches of membrane can be physically isolated from cells. This isolation enables the recording of single channel currents with well-defined solutions on both sides of the membrane. Two types of isolated cell-free patch configurations can be formed: an inside-out patch with its cytoplasmic membrane face exposed to the bath solution, and an outside-out patch with its extracellular membrane face exposed to the bath solution. 6. The application of the method for the recording of ionic currents and internal dialysis of small cells is considered. Single channel resolution can be achieved when recording from whole cells, if the cell diameter is small (less than 20 micrometer). 7. The wide range of cell types amenable to giga-seal formation is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors.

            Neonicotinoids, the most important new class of synthetic insecticides of the past three decades, are used to control sucking insects both on plants and on companion animals. Imidacloprid (the principal example), nitenpyram, acetamiprid, thiacloprid, thiamethoxam, and others act as agonists at the insect nicotinic acetylcholine receptor (nAChR). The botanical insecticide nicotine acts at the same target without the neonicotinoid level of effectiveness or safety. Fundamental differences between the nAChRs of insects and mammals confer remarkable selectivity for the neonicotinoids. Whereas ionized nicotine binds at an anionic subsite in the mammalian nAChR, the negatively tipped ("magic" nitro or cyano) neonicotinoids interact with a proposed unique subsite consisting of cationic amino acid residue(s) in the insect nAChR. Knowledge reviewed here of the functional architecture and molecular aspects of the insect and mammalian nAChRs and their neonicotinoid-binding site lays the foundation for continued development and use of this new class of safe and effective insecticides.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resistance of insect pests to neonicotinoid insecticides: current status and future prospects.

              The first neonicotinoid insecticide introduced to the market was imidacloprid in 1991 followed by several others belonging to the same chemical class and with the same mode of action. The development of neonicotinoid insecticides has provided growers with invaluable new tools for managing some of the world's most destructive crop pests, primarily those of the order Hemiptera (aphids, whiteflies, and planthoppers) and Coleoptera (beetles), including species with a long history of resistance to earlier-used products. To date, neonicotinoids have proved relatively resilient to the development of resistance, especially when considering aphids such as Myzus persicae and Phorodon humuli. Although the susceptibility of M. persicae may vary up to 20-fold between populations, this does not appear to compromise the field performance of neonicotinoids. Stronger resistance has been confirmed in some populations of the whitefly, Bemisia tabaci, and the Colorado potato beetle, Leptinotarsa decemlineata. Resistance in B- and Q-type B. tabaci appears to be linked to enhanced oxidative detoxification of neonicotinoids due to overexpression of monooxygenases. No evidence for target-site resistance has been found in whiteflies, whereas the possibility of target-site resistance in L. decemlineata is being investigated further. Strategies to combat neonicotinoid resistance must take account of the cross-resistance characteristics of these mechanisms, the ecology of target pests on different host plants, and the implications of increasing diversification of the neonicotinoid market due to a continuing introduction of new molecules. Copyright 2005 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Pest Manag Sci
                Pest Manag. Sci
                ps
                Pest Management Science
                John Wiley & Sons, Ltd (Chichester, UK )
                1526-498X
                1526-4998
                June 2015
                27 November 2014
                : 71
                : 6
                : 850-862
                Affiliations
                Research & Development, Bayer CropScience 40789, Monheim, Germany
                Author notes
                * Correspondence to: Ralf Nauen, Bayer CropScience AG, RD-SMR, PCB, Building 6220, Alfred Nobel Str. 50, 40789 Monheim, Germany. E-mail: ralf.nauen@ 123456bayer.com

                The copyright line for this article was changed on 12 October 2015 after original online publication.

                Article
                10.1002/ps.3932
                4657471
                25351824
                9e449081-890e-454d-912a-2f8e29670a12
                © 2015 Society of Chemical Industry

                This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 21 August 2014
                : 15 October 2014
                : 28 October 2014
                Categories
                Research Articles

                Pests, Diseases & Weeds
                flupyradifurone,sivanto®,nicotinic acetylcholine receptor agonist,cyp6cm1,metabolic resistance,resistance management,sucking pests,butenolide

                Comments

                Comment on this article