39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Complete Chloroplast and Mitochondrial Genomes of the Green Macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes ( Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes ( O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales).

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes

          Background Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. Conclusions Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Green algae and the origin of land plants.

            Over the past two decades, molecular phylogenetic data have allowed evaluations of hypotheses on the evolution of green algae based on vegetative morphological and ultrastructural characters. Higher taxa are now generally recognized on the basis of ultrastructural characters. Molecular analyses have mostly employed primarily nuclear small subunit rDNA (18S) and plastid rbcL data, as well as data on intron gain, complete genome sequencing, and mitochondrial sequences. Molecular-based revisions of classification at nearly all levels have occurred, from dismemberment of long-established genera and families into multiple classes, to the circumscription of two major lineages within the green algae. One lineage, the chlorophyte algae or Chlorophyta sensu stricto, comprises most of what are commonly called green algae and includes most members of the grade of putatively ancestral scaly flagellates in Prasinophyceae plus members of Ulvophyceae, Trebouxiophyceae, and Chlorophyceae. The other lineage (charophyte algae and embryophyte land plants), comprises at least five monophyletic groups of green algae, plus embryophytes. A recent multigene analysis corroborates a close relationship between Mesostigma (formerly in the Prasinophyceae) and the charophyte algae, although sequence data of the Mesostigma mitochondrial genome analysis places the genus as sister to charophyte and chlorophyte algae. These studies also support Charales as sister to land plants. The reorganization of taxa stimulated by molecular analyses is expected to continue as more data accumulate and new taxa and habitats are sampled.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber.

              Members of the flowering plant family Cucurbitaceae harbor the largest known mitochondrial genomes. Here, we report the 1685-kb mitochondrial genome of cucumber (Cucumis sativus). We help solve a 30-year mystery about the origins of its large size by showing that it mainly reflects the proliferation of dispersed repeats, expansions of existing introns, and the acquisition of sequences from diverse sources, including the cucumber nuclear and chloroplast genomes, viruses, and bacteria. The cucumber genome has a novel structure for plant mitochondria, mapping as three entirely or largely autonomous circular chromosomes (lengths 1556, 84, and 45 kb) that vary in relative abundance over a twofold range. These properties suggest that the three chromosomes replicate independently of one another. The two smaller chromosomes are devoid of known functional genes but nonetheless contain diagnostic mitochondrial features. Paired-end sequencing conflicts reveal differences in recombination dynamics among chromosomes, for which an explanatory model is developed, as well as a large pool of low-frequency genome conformations, many of which may result from asymmetric recombination across intermediate-sized and sometimes highly divergent repeats. These findings highlight the promise of genome sequencing for elucidating the recombinational dynamics of plant mitochondrial genomes.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                7 April 2015
                2015
                : 10
                : 4
                : e0121020
                Affiliations
                [1 ]Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487-0345, United States of America
                [2 ]Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium
                [3 ]Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949, United States of America
                BiK-F Biodiversity and Climate Research Center, GERMANY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JTM FL AT JMLB. Performed the experiments: JTM FL AT. Analyzed the data: JTM FL. Contributed reagents/materials/analysis tools: JMLB. Wrote the paper: JTM FL AT JMLB.

                Article
                PONE-D-14-46818
                10.1371/journal.pone.0121020
                4388391
                25849557
                9ee1f15a-9e3a-4001-bf2b-e4bf35350bef
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 23 October 2014
                : 9 February 2015
                Page count
                Figures: 3, Tables: 8, Pages: 21
                Funding
                This study was funded by The National Science Foundation under the ATOL Program, through grants DEB 1036495 and 0937978 to JMLB. Additional support was provided by the College of Arts and Sciences (CARSCA Program) and the Office for Research (Research Stimulation Program) at UA to JMLB, and the Department of Biological Sciences (research and travel awards) to JTM.
                Categories
                Research Article
                Custom metadata
                All genome sequences are available from the GenBank database: the chloroplast genome of Ulva sp. (KP720616) and the mitochondrial genome of Ulva sp. (KP720617).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article