6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Short-term effects of air pollution on respiratory mortality in Ahvaz, Iran

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Urban air pollutants may affect respiratory mortality. This study was conducted to investigate this effect in Ahvaz, one of the most polluted cities in the world.

          Methods: The impact of 7 major air pollutants including O3, PM10, NO2, CO, and SO2 were evaluated on respiratory mortality in different gender and age groups using a quasi-Poisson, second degree polynomial constrained, distributed lag model, with single and cumulative lag structures adjusted by trend, seasonality, temperature, relative humidity, weekdays, and holiday. Data were analyzed using the dlnm package in R x64 3.2.5 software. Significance level was set at less than 0.05.

          Results: In adjusted models, for each IQR increase of O3 in the total population, the risk ratio (RR) for respiratory deaths in 0 to 14- day lags was, respectively, 1.009 (95% CI:1.001-1.016) and 1.009 (95% CI:1.002-1.017), and it was 1.021 (95% CI: 1.002-1.040) in cumulative 0 to 14- day lags. For PM10, in the total population and in adjusted models after 0 to 14- day lags and in cumulative lags of 0 to 14 for an IQR increase in the mean concentration of PM10, the RR for respiratory deaths increased significantly and was, respectively, 1.027 (95% CI:1.002-1.051), 1.029 (95% CI:1.006-1.052), and 1.065 (95% CI:1.005-1.128). NO2 showed a significant association with respiratory deaths only in the 18 to 60 year- old age group and in 9- day lags (RR= 1.318, 95% CI:1.002-1.733). Finally, the results showed that for an IQR increase in the mean concentration of CO and SO2, the adjusted RR for respiratory deaths in 9- day lags in the total population was, respectively, RR= 1.058 (95% CI:1.008-1.111) and 1.126 (95% CI:1.034-1.220).

          Conclusion: Air pollution in Ahvaz is probably causing increased respiratory mortality.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Adverse cardiovascular effects of air pollution.

          Air pollution is increasingly recognized as an important and modifiable determinant of cardiovascular disease in urban communities. Acute exposure has been linked to a range of adverse cardiovascular events including hospital admissions with angina, myocardial infarction, and heart failure. Long-term exposure increases an individual's lifetime risk of death from coronary heart disease. The main arbiter of these adverse health effects seems to be combustion-derived nanoparticles that incorporate reactive organic and transition metal components. Inhalation of this particulate matter leads to pulmonary inflammation with secondary systemic effects or, after translocation from the lung into the circulation, to direct toxic cardiovascular effects. Through the induction of cellular oxidative stress and proinflammatory pathways, particulate matter augments the development and progression of atherosclerosis via detrimental effects on platelets, vascular tissue, and the myocardium. These effects seem to underpin the atherothrombotic consequences of acute and chronic exposure to air pollution. An increased understanding of the mediators and mechanisms of these processes is necessary if we are to develop strategies to protect individuals at risk and reduce the effect of air pollution on cardiovascular disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-Term Effects of Traffic-Related Air Pollution on Mortality in a Dutch Cohort (NLCS-AIR Study)

            Background Several studies have found an effect on mortality of between-city contrasts in long-term exposure to air pollution. The effect of within-city contrasts is still poorly understood. Objectives We studied the association between long-term exposure to traffic-related air pollution and mortality in a Dutch cohort. Methods We used data from an ongoing cohort study on diet and cancer with 120,852 subjects who were followed from 1987 to 1996. Exposure to black smoke (BS), nitrogen dioxide, sulfur dioxide, and particulate matter ≤mu;M2.5), as well as various exposure variables related to traffic, were estimated at the home address. We conducted Cox analyses in the full cohort adjusting for age, sex, smoking, and area-level socioeconomic status. Results Traffic intensity on the nearest road was independently associated with mortality. Relative risks (95% confidence intervals) for a 10-μg/m3 increase in BS concentrations (difference between 5th and 95th percentile) were 1.05 (1.00–1.11) for natural cause, 1.04 (0.95–1.13) for cardiovascular, 1.22 (0.99–1.50) for respiratory, 1.03 (0.88–1.20) for lung cancer, and 1.04 (0.97–1.12) for mortality other than cardiovascular, respiratory, or lung cancer. Results were similar for NO2 and PM2.5, but no associations were found for SO2. Conclusions Traffic-related air pollution and several traffic exposure variables were associated with mortality in the full cohort. Relative risks were generally small. Associations between natural-cause and respiratory mortality were statistically significant for NO2 and BS. These results add to the evidence that long-term exposure to ambient air pollution is associated with increased mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Long-Term Exposure to Urban Air Pollution and Mortality in a Cohort of More than a Million Adults in Rome

              Background: Few European studies have investigated the effects of long-term exposure to both fine particulate matter (≤ 2.5 µm; PM2.5) and nitrogen dioxide (NO2) on mortality. Objectives: We studied the association of exposure to NO2, PM2.5, and traffic indicators on cause-specific mortality to evaluate the form of the concentration–response relationship. Methods: We analyzed a population-based cohort enrolled at the 2001 Italian census with 9 years of follow-up. We selected all 1,265,058 subjects ≥ 30 years of age who had been living in Rome for at least 5 years at baseline. Residential exposures included annual NO2 (from a land use regression model) and annual PM2.5 (from a Eulerian dispersion model), as well as distance to roads with > 10,000 vehicles/day and traffic intensity. We used Cox regression models to estimate associations with cause-specific mortality adjusted for individual (sex, age, place of birth, residential history, marital status, education, occupation) and area (socioeconomic status, clustering) characteristics. Results: Long-term exposures to both NO2 and PM2.5 were associated with an increase in nonaccidental mortality [hazard ratio (HR) = 1.03 (95% CI: 1.02, 1.03) per 10-µg/m3 NO2; HR = 1.04 (95% CI: 1.03, 1.05) per 10-µg/m3 PM2.5]. The strongest association was found for ischemic heart diseases (IHD) [HR = 1.10 (95% CI: 1.06, 1.13) per 10-µg/m3 PM2.5], followed by cardiovascular diseases and lung cancer. The only association showing some deviation from linearity was that between NO2 and IHD. In a bi-pollutant model, the estimated effect of NO2 on mortality was independent of PM2.5. Conclusions: This large study strongly supports an effect of long-term exposure to NO2 and PM2.5 on mortality, especially from cardiovascular causes. The results are relevant for the next European policy decisions regarding air quality.
                Bookmark

                Author and article information

                Journal
                Med J Islam Repub Iran
                Med J Islam Repub Iran
                MJIRI
                Med J Islam Repub Iran
                Medical Journal of the Islamic Republic of Iran
                Iran University of Medical Sciences
                1016-1430
                2251-6840
                2018
                08 April 2018
                : 32
                : 30
                Affiliations
                1 Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
                2 Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
                3 Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
                4 Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
                5 Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
                6 Nursing and Emergency Department, Dezful University of Medical Sciences, Dezful, Iran.
                Author notes
                Corresponding author: Dr Esmaeil Idani, esmaileidani@ 123456gmail.com
                Article
                10.14196/mjiri.32.30
                6108243
                9f08903f-52bd-4e3f-b17b-aae1d7848bd7
                © 2018 Iran University of Medical Sciences

                This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial 3.0 License (CC BY-NC 3.0), which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

                History
                : 20 January 2017
                Page count
                Figures: 3, Tables: 3, References: 71, Pages: 9
                Categories
                Original Article

                short-term effects,air pollution,,respiratory mortality,ahvaz

                Comments

                Comment on this article