1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prokaryotic Pangenomes Act as Evolving Ecosystems

      article-commentary
      Molecular Biology and Evolution
      Oxford University Press
      pangenomes, prokaryote, ecosystem

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding adaptation to the local environment is a central tenet and a major focus of evolutionary biology. But this is only part of the adaptionist story. In addition to the external environment, one of the main drivers of genome composition is genetic background. In this perspective, I argue that there is a growing body of evidence that intra-genomic selective pressures play a significant part in the composition of prokaryotic genomes and play a significant role in the origin, maintenance and structuring of prokaryotic pangenomes.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome".

          The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Black Queen Hypothesis: Evolution of Dependencies through Adaptive Gene Loss

            ABSTRACT Reductive genomic evolution, driven by genetic drift, is common in endosymbiotic bacteria. Genome reduction is less common in free-living organisms, but it has occurred in the numerically dominant open-ocean bacterioplankton Prochlorococcus and “Candidatus Pelagibacter,” and in these cases the reduction appears to be driven by natural selection rather than drift. Gene loss in free-living organisms may leave them dependent on cooccurring microbes for lost metabolic functions. We present the Black Queen Hypothesis (BQH), a novel theory of reductive evolution that explains how selection leads to such dependencies; its name refers to the queen of spades in the game Hearts, where the usual strategy is to avoid taking this card. Gene loss can provide a selective advantage by conserving an organism’s limiting resources, provided the gene’s function is dispensable. Many vital genetic functions are leaky, thereby unavoidably producing public goods that are available to the entire community. Such leaky functions are thus dispensable for individuals, provided they are not lost entirely from the community. The BQH predicts that the loss of a costly, leaky function is selectively favored at the individual level and will proceed until the production of public goods is just sufficient to support the equilibrium community; at that point, the benefit of any further loss would be offset by the cost. Evolution in accordance with the BQH thus generates “beneficiaries” of reduced genomic content that are dependent on leaky “helpers,” and it may explain the observed nonuniversality of prototrophy, stress resistance, and other cellular functions in the microbial world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli.

              We present the complete genome sequence of uropathogenic Escherichia coli, strain CFT073. A three-way genome comparison of the CFT073, enterohemorrhagic E. coli EDL933, and laboratory strain MG1655 reveals that, amazingly, only 39.2% of their combined (nonredundant) set of proteins actually are common to all three strains. The pathogen genomes are as different from each other as each pathogen is from the benign strain. The difference in disease potential between O157:H7 and CFT073 is reflected in the absence of genes for type III secretion system or phage- and plasmid-encoded toxins found in some classes of diarrheagenic E. coli. The CFT073 genome is particularly rich in genes that encode potential fimbrial adhesins, autotransporters, iron-sequestration systems, and phase-switch recombinases. Striking differences exist between the large pathogenicity islands of CFT073 and two other well-studied uropathogenic E. coli strains, J96 and 536. Comparisons indicate that extraintestinal pathogenic E. coli arose independently from multiple clonal lineages. The different E. coli pathotypes have maintained a remarkable synteny of common, vertically evolved genes, whereas many islands interrupting this common backbone have been acquired by different horizontal transfer events in each strain.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Mol Biol Evol
                Mol Biol Evol
                molbev
                Molecular Biology and Evolution
                Oxford University Press (US )
                0737-4038
                1537-1719
                January 2023
                27 October 2022
                27 October 2022
                : 40
                : 1
                : msac232
                Affiliations
                School of Life Sciences, The University of Nottingham, University Park , Nottingham NG7 2UH, UK
                Author notes
                Corresponding author: E-mail: james.mcinerney@ 123456nottingham.ac.uk
                Author information
                https://orcid.org/0000-0003-1885-2503
                Article
                msac232
                10.1093/molbev/msac232
                9851318
                36288801
                9f1e79fe-b1c3-4e79-ad5a-d5a9cb13f7e9
                © The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 6
                Categories
                Perspective
                AcademicSubjects/SCI01130
                AcademicSubjects/SCI01180

                Molecular biology
                pangenomes,prokaryote,ecosystem
                Molecular biology
                pangenomes, prokaryote, ecosystem

                Comments

                Comment on this article