Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical Features and Gene Mutations of Lung Cancer Patients 30 Years of Age or Younger

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Few studies examining the clinical features and gene mutations in lung cancer patients 30 years of age or younger have been published. A trend towards increasing morbidity has been noted in young patients; thus, an urgent need exists to explore this subgroup of patients.

          Methods

          Patients aged ≤30 years with pathologically diagnosed lung cancer were retrospectively evaluated. We reviewed the clinical features, gene mutations and prognosis of each patient.

          Results

          Forty-one patients were included in this study. The mean age was 26.4±3.5 years. Cough, tightness/dyspnea and chest pain were common symptoms, and 58.5% of patients presented with advanced stages of lung cancer. Adenocarcinoma was the predominant histologic type noted in these young patients. Masses and nodules were the dominant imaging features observed upon lung computed tomography (CT). Thoracic lymphadenopathy occurred very frequently in these patients. Five of 6 patients with echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) gene fusions presented solid masses with no ground-glass opacity (GGO) and thoracic multifocal lymphadenopathy. Six of 22 (27.2%) cases contained EML4-ALK gene fusions. In addition, 5 of 22 (22.7%) patients harbored epidermal growth factor receptor (EGFR) mutations, and 2 of 17 patients exhibited KRAS and ROS1 gene mutations. The median survival times were 44.2 months for patients with early stage disease and 8 months for patients with advanced NSCLC disease. The one-year and 5-year survival rates were 56.6% and 38.6%, respectively.

          Conclusions

          Increased gene mutation frequencies are noted in these very young lung cancer patients. This finding indicates that the detection of gene mutations in these patients is important and will help to determine the appropriate targeted therapy.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers.

          Mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene in lung cancers are associated with increased sensitivity of these cancers to drugs that inhibit EGFR kinase activity. However, the role of such mutations in the pathogenesis of lung cancers is unclear. We sequenced exons 18-21 of the EGFR TK domain from genomic DNA isolated from 617 non-small-cell lung cancers (NSCLCs) and 524 normal lung tissue samples from the same patients and 36 neuroendocrine lung tumors collected from patients in Japan, Taiwan, the United States, and Australia and from 243 other epithelial cancers. Mutation status was compared with clinicopathologic features and with the presence of mutations in KRAS, a gene in the EGFR signaling pathway that is also frequently mutated in lung cancers. All statistical tests were two sided. We detected a total of 134 EGFR TK domain mutations in 130 (21%) of the 617 NSCLCs but not in any of the other carcinomas, nor in nonmalignant lung tissue from the same patients. In NSCLC patients, EGFR TK domain mutations were statistically significantly more frequent in never smokers than ever smokers (51% versus 10%), in adenocarcinomas versus cancer of other histologies (40% versus 3%), in patients of East Asian ethnicity versus other ethnicities (30% versus 8%), and in females versus males (42% versus 14%; all P < .001). EGFR TK domain mutation status was not associated with patient age at diagnosis, clinical stage, the presence of bronchioloalveolar histologic features, or overall survival. The EGFR TK domain mutations we detected were of three common types: in-frame deletions in exon 19, single missense mutations in exon 21, and in-frame duplications/insertions in exon 20. Rare missense mutations were also detected in exons 18, 20, and 21. KRAS gene mutations were present in 50 (8%) of the 617 NSCLCs but not in any tumors with an EGFR TK domain mutation. Mutations in either the EGFR TK domain or the KRAS gene can lead to lung cancer pathogenesis. EGFR TK domain mutations are the first molecular change known to occur specifically in never smokers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RET, ROS1 and ALK fusions in lung cancer.

            Through an integrated molecular- and histopathology-based screening system, we performed a screening for fusions of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1, receptor tyrosine kinase (ROS1) in 1,529 lung cancers and identified 44 ALK-fusion-positive and 13 ROS1-fusion-positive adenocarcinomas, including for unidentified fusion partners for ROS1. In addition, we discovered previously unidentified kinase fusions that may be promising for molecular-targeted therapy, kinesin family member 5B (KIF5B)-ret proto-oncogene (RET) and coiled-coil domain containing 6 (CCDC6)-RET, in 14 adenocarcinomas. A multivariate analysis of 1,116 adenocarcinomas containing these 71 kinase-fusion-positive adenocarcinomas identified four independent factors that are indicators of poor prognosis: age ≥ 50 years, male sex, high pathological stage and negative kinase-fusion status.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New driver mutations in non-small-cell lung cancer.

              Treatment decisions for patients with lung cancer have historically been based on tumour histology. Some understanding of the molecular composition of tumours has led to the development of targeted agents, for which initial findings are promising. Clearer understanding of mutations in relevant genes and their effects on cancer cell proliferation and survival, is, therefore, of substantial interest. We review current knowledge about molecular subsets in non-small-cell lung cancer that have been identified as potentially having clinical relevance to targeted therapies. Since mutations in EGFR and KRAS have been extensively reviewed elsewhere, here, we discuss subsets defined by so-called driver mutations in ALK, HER2 (also known as ERBB2), BRAF, PIK3CA, AKT1, MAP2K1, and MET. The adoption of treatment tailored according to the genetic make-up of individual tumours would involve a paradigm shift, but might lead to substantial therapeutic improvements. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2 September 2015
                2015
                : 10
                : 9
                : e0136659
                Affiliations
                [1 ]Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
                [2 ]Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
                Zhongshan Hospital Fudan University, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YW JZ. Performed the experiments: WD. Analyzed the data: JC BY YW QG. Contributed reagents/materials/analysis tools: YW JZ. Wrote the paper: JC YW.

                Article
                PONE-D-15-04714
                10.1371/journal.pone.0136659
                4557988
                26332764
                9fc0d02e-9c65-4591-a441-4fddd3a7a5bc
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 1 February 2015
                : 5 August 2015
                Page count
                Figures: 2, Tables: 5, Pages: 12
                Funding
                This study was partly supported by the Fund of Science Technology Department of Zhejiang Province (No. 2012C33064) and the Fund of Education Department of Zhejiang Province (No. Y201120841).
                Categories
                Research Article
                Custom metadata
                Data are available from the Ethics Committee of the First Affiliated Hospital, College of Medicine, Zhejiang University, for researchers who meet the criteria for access to confidential data. Readers can contact the corresponding author ( zjyhz@ 123456zju.edu.cn ) to request the data.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article