32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Musical Role Asymmetries in Piano Duet Performance Influence Alpha-Band Neural Oscillation and Behavioral Synchronization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent work in interpersonal coordination has revealed that neural oscillations, occurring spontaneously in the human brain, are modulated during the sensory, motor, and cognitive processes involved in interpersonal interactions. In particular, alpha-band (8–12 Hz) activity, linked to attention in general, is related to coordination dynamics and empathy traits. Researchers have also identified an association between each individual’s attentiveness to their co-actor and the relative similarity in the co-actors’ roles, influencing their behavioral synchronization patterns. We employed music ensemble performance to evaluate patterns of behavioral and neural activity when roles between co-performers are systematically varied with complete counterbalancing. Specifically, we designed a piano duet task, with three types of co-actor dissimilarity, or asymmetry: (1) musical role (starting vs. joining), (2) musical task similarity (similar vs. dissimilar melodic parts), and (3) performer animacy (human-to-human vs. human-to-non-adaptive computer). We examined how the experience of these asymmetries in four initial musical phrases, alternatingly played by the co-performers, influenced the pianists’ performance of a subsequent unison phrase. Electroencephalography was recorded simultaneously from both performers while playing keyboards. We evaluated note-onset timing and alpha modulation around the unison phrase. We also investigated whether each individual’s self-reported empathy was related to behavioral and neural activity. Our findings revealed closer behavioral synchronization when pianists played with a human vs. computer partner, likely because the computer was non-adaptive. When performers played with a human partner, or a joining performer played with a computer partner, having a similar vs. dissimilar musical part did not have a significant effect on their alpha modulation immediately prior to unison. However, when starting performers played with a computer partner with a dissimilar vs. similar part there was significantly greater alpha synchronization. In other words, starting players attended less to the computer partner playing a similar accompaniment, operating in a solo-like mode. Moreover, this alpha difference based on melodic similarity was related to a difference in note-onset adaptivity, which was in turn correlated with performer trait empathy. Collectively our results extend previous findings by showing that musical ensemble performance gives rise to a socialized context whose lasting effects encompass attentiveness, perceptual-motor coordination, and empathy.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Alpha-band oscillations, attention, and controlled access to stored information

          Alpha-band oscillations are the dominant oscillations in the human brain and recent evidence suggests that they have an inhibitory function. Nonetheless, there is little doubt that alpha-band oscillations also play an active role in information processing. In this article, I suggest that alpha-band oscillations have two roles (inhibition and timing) that are closely linked to two fundamental functions of attention (suppression and selection), which enable controlled knowledge access and semantic orientation (the ability to be consciously oriented in time, space, and context). As such, alpha-band oscillations reflect one of the most basic cognitive processes and can also be shown to play a key role in the coalescence of brain activity in different frequencies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks.

            We studied the reactivity of EEG rhythms (mu rhythms) in association with the imagination of right hand, left hand, foot, and tongue movement with 60 EEG electrodes in nine able-bodied subjects. During hand motor imagery, the hand mu rhythm blocked or desynchronized in all subjects, whereas an enhancement of the hand area mu rhythm was observed during foot or tongue motor imagery in the majority of the subjects. The frequency of the most reactive components was 11.7 Hz +/- 0.4 (mean +/- SD). While the desynchronized components were broad banded and centered at 10.9 Hz +/- 0.9, the synchronized components were narrow banded and displayed higher frequencies at 12.0 Hz +/- 1.0. The discrimination between the four motor imagery tasks based on classification of single EEG trials improved when, in addition to event-related desynchronization (ERD), event-related synchronization (ERS) patterns were induced in at least one or two tasks. This implies that such EEG phenomena may be utilized in a multi-class brain-computer interface (BCI) operated simply by motor imagery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Inter-Brain Synchronization during Social Interaction

              During social interaction, both participants are continuously active, each modifying their own actions in response to the continuously changing actions of the partner. This continuous mutual adaptation results in interactional synchrony to which both members contribute. Freely exchanging the role of imitator and model is a well-framed example of interactional synchrony resulting from a mutual behavioral negotiation. How the participants' brain activity underlies this process is currently a question that hyperscanning recordings allow us to explore. In particular, it remains largely unknown to what extent oscillatory synchronization could emerge between two brains during social interaction. To explore this issue, 18 participants paired as 9 dyads were recorded with dual-video and dual-EEG setups while they were engaged in spontaneous imitation of hand movements. We measured interactional synchrony and the turn-taking between model and imitator. We discovered by the use of nonlinear techniques that states of interactional synchrony correlate with the emergence of an interbrain synchronizing network in the alpha-mu band between the right centroparietal regions. These regions have been suggested to play a pivotal role in social interaction. Here, they acted symmetrically as key functional hubs in the interindividual brainweb. Additionally, neural synchronization became asymmetrical in the higher frequency bands possibly reflecting a top-down modulation of the roles of model and imitator in the ongoing interaction.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                15 October 2019
                2019
                : 13
                : 1088
                Affiliations
                [1] 1Center for Computer Research in Music and Acoustics, Department of Music, Stanford University , Stanford, CA, United States
                [2] 2Department of Computer Science and Engineering, University of California, San Diego , San Diego, CA, United States
                [3] 3Wu Tsai Neurosciences Institute, Stanford University , Stanford, CA, United States
                Author notes

                Edited by: Daya Shankar Gupta, Camden County College, United States

                Reviewed by: Caroline Palmer, McGill University, Canada; Marc Leman, Ghent University, Belgium; Laura Bishop, Austrian Research Institute for Artificial Intelligence, Austria

                *Correspondence: Auriel Washburn, awashburn@ 123456ucdavis.edu

                Present address: Wisam Reid, Speach and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States

                This article was submitted to Perception Science, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2019.01088
                6803471
                a03a3cbc-cd55-44c8-88fb-2df36c4a6f35
                Copyright © 2019 Washburn, Román, Huberth, Gang, Dauer, Reid, Nanou, Wright and Fujioka.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 May 2019
                : 27 September 2019
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 86, Pages: 18, Words: 0
                Funding
                Funded by: Directorate for Social, Behavioral and Economic Sciences 10.13039/100000088
                Categories
                Neuroscience
                Original Research

                Neurosciences
                eeg,neural oscillation,alpha oscillations,perceptual-motor coordination,role asymmetries,social neuroscience,interpersonal coordination,musical performance

                Comments

                Comment on this article